Well, to begin with, I'd like to say thank you to MIT open courses twice. It's their generosity that gives me the priviledge to enjoy the most outstanding education resources.

  Okay, come to the point -- The Frequency in Oscillation System.

  In general, there are two cases, undamped and damped. Let's begin with the first and easier one.

  Case 1. Undamped Oscillation System.

    In this system, the general form of the equation is $y'' + \omega_{0}^{2}y=f(x)$, in which $f(x)$ refers to the input or, more practically, driving or forcing term.

    In this case, there is only one frequency: The Natural Frequency of this system $\omega_{0}$, AND if $f(x)$ is a trigonometric function, to maximize the amplitude or give rise to authentic resonance, we just need to let the frequency of $f(x)$ equals to $\omega_{0}$.

    Okay, let's do the inferences. First of all, if we want to get the natural frequency, we have to come back to the reduced or associated homogeneous equation(just let $f(x)$ equal to $0$).

    So, we get $y'' + \omega_{0}^{2}y=0$. It's easy to solve by set $y = e^{rt}$, in which $t$ is the usually independent variable, specifically time in practical usage, and $r$ is the unknown constant.

    This process is quite simple. So I just omit it and present the result. We finally get $y = c_{1}\cos\omega_{0} t + c_{2}\sin\omega_{0} t$. Let's choose a simple particular solution.

    $y = \cos\omega_{0} t$

    So, coming to this step, it's quite clear to see that this system possess a natural frequency $\omega_{0}$.

    But, further, with the driving term $\cos\omega t$, the solution will be the real part of $\displaystyle \tilde{y} = \frac{e^{i\omega t}}{\omega_{0}^{2}-\omega^{2}}$. And, by some analysis, we will get the conclusion that the resonance will occur if $\omega \to \omega_{0}$.

  Case  2. Damped Oscillation System.

    In the same way, the general form of the equation is $y'' + 2py' + \omega_{0}^{2}y = f(x)$, in which $f(x)$ refers to the input or, more practically, driving or forcing term and $p \ne 0$.

    In this case, there exists three frequency: The Natural Frequency of the associated undamped oscillation system $\omega_{0}$, The Damping Frequency, which is a pseudo frequency because actually the solution is not a pure trigonometric function, $\omega_{1}$, which equals to $\sqrt{\omega_{0}^{2}-p^{2}}$, The Frequency which driving force needs to maximize its pseudo amplitude or give rise to pseudo resonance, $\omega_{r}$, which equals to $\sqrt{\omega_{0}^{2}-2p^{2}}$ or $\sqrt{\omega_{1}^{2}-p^{2}}$.

    Okay, so let's begin with the simplest one, the natural frequency. Just delect the first-order term and remove the $f(x)$ and according to the case 1, we will get the result. That's simple, so it does not deserve detailed explanation.

    Secondly, the damping frequency. Above all, I have to clarify that in order to generate oscillation, this system has to be underdamped, which means that $p^{2}-\omega_{0}^{2}<0$, and we need to go back to the associated homogeneous equation too. So, by using the characteristic function, we get the roots are $-p \pm \sqrt{\omega_{0}^{2}-p^{2}}i$. That's why we set $\omega_{1}=\sqrt{\omega_{0}^{2}-p^{2}}$. As a result, we will finally get one simple particular solution $y = e^{-pt}\cos\omega_{1}t$. And, that's pseudo frequency because despite the behaviors it possesses, like frequency, period, oscillation, its amplitude actually fades with time. So the oscillation actually decays with time.

    Thirdly, we come to the most difficult part, which frequency maximizes its pseudo amplitude or gives rise to pseudo resonance. Above all, by same practice, we set $f(x) =\cos\omega t$ and assume that $p(\alpha) \ne 0$. (NOTE: 1. $p(\alpha)$ means we substitude every $D$(the note of differentiation) in the polynomial with $\alpha$, in this specific case, the polynomial is $D^{2}+2pD+\omega_{0}^{2}$ 2. $\alpha$ is the complex index number of the exponential form of driving term after we complexify the $f(x)$.) So we get the complex solution $\displaystyle \tilde{y} = \frac {e^{i\omega t}}{-\omega^{2}+\omega_{0}^{2}+2p\omega i}$.

    Above all, we need to simplify the problem.

    Step 1. We need to do some fixes on the denominator. $\omega_{0}^{2}+2p\omega i - \omega^{2} = \omega_{1}^{2}+p^{2}+2p\omega i-\omega^{2}$. Let's say $\bar{\omega}^{2} = \omega_{1}^{2}+p^{2}-\omega^{2}$(NOTE: bar here doesn't mean conjugation). So we have $\displaystyle \tilde{y} = \frac {e^{i\omega t}}{\bar{\omega}^{2}+2p\omega i}$.

    Step 2. Extract the real part. $\displaystyle \tilde{y} = \frac {e^{i\omega t}}{\bar{\omega}^{2}+2p\omega i}=\frac {e^{i\omega t}(\bar{\omega}^{2}-2p\omega i)}{\bar{\omega}^{4}+4p^{2}\omega^{2}}$, so $\displaystyle y = \frac {\bar{\omega}^{2}}{\bar{\omega}^{4}+4p^{2}\omega^{2}}\cos\omega t + \frac{2p\omega}{\bar{\omega}^{4}+4p^{2}\omega^{2}}\sin\omega t$.

    Step 3. So the amplitude is $\displaystyle \sqrt{(\frac {\bar{\omega}^{2}}{\bar{\omega}^{4}+4p^{2}\omega^{2}})^{2} + (\frac{2p\omega}{\bar{\omega}^{4}+4p^{2}\omega^{2}})^{2}}$, which is $\displaystyle \frac{1}{\sqrt{\bar{\omega}^{4} + 4p^{2}\omega^{2}}} = \frac{1}{\sqrt{(\omega_{1}^{2}+p^{2}-\omega^{2})^{2} + 4p^{2}\omega^{2}}}$.

    Step 4. In order to get the maximize amplitude, we need to minimize the denominator. And using some senior high school's knowledge, this would be $\omega^{2} = \omega_{1}^{2}-p^{2}$. And that is $\omega_{r}$.

    And there remains an assumption to deal with. $p(\alpha) = 0$, is this possible? Let us see the denominator $\omega_{1}^{2}+p^{2}+2p\omega i-\omega^{2}$. If it's zero, then $p = 0$ or $\omega = 0$. Based on the condition, we know that $p \ne 0$ and $\omega = 0$ is meaningless. So we can safely exclude this case.

[Mathematics][MIT 18.03] Detailed Explanation of the Frequency Problems in Second-Order Differential Equation of Oscillation System的更多相关文章

  1. [Mathematics][MIT 18.03] Proof of a Theory about the Solution to Second-order Linear Homogeneous Differential Equation

    At first, I'd like to say thank you to MIT open courses which give me the privilege to enjoy the mos ...

  2. [Mathematics][MIT 18.02]Detailed discussions about 2-D and 3-D integral and their connections

    Since it is just a sort of discussion, I will just give the formula and condition without proving th ...

  3. PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)

    前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...

  4. Docker 18.03 Centos7.6 安装 内网

    首先访问https://download.docker.com/linux/centos/7/x86_64/stable/Packages/获取对应版本的rpm包docker包docker-ce-18 ...

  5. 18/03/18 04:53:44 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources

    1:遇到这个问题是在启动bin/spark-shell以后,然后呢,执行spark实现wordcount的例子的时候出现错误了,如: scala> sc.textFile()).reduceBy ...

  6. windows的docker开始支持linux的镜像 ,Version 18.03.0-ce-win59 (16762)

    LCOW containers can now be run next to Windows containers.Use '--platform=linux' in Windows containe ...

  7. [MIT 18.06 线性代数]Intordution to Vectors向量初体验

    目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...

  8. Docker 18.03导入导出

    docker中分容器和镜像,简单可以理解为容器是运行中的实例,镜像是运行实例所需的静态文件. 导入导出既可以对容器做操作,也可以对镜像做操作.区别在于镜像可以随时导出,容器必须要停止之后才可以导出,否 ...

  9. ApacheCN 编程/大数据/数据科学/人工智能学习资源 2019.12

    公告 我们的所有非技术内容和活动,从现在开始会使用 iBooker 这个名字. "开源互助联盟"已终止,我们对此表示抱歉和遗憾.除非特地邀请,我们不再推广他人的任何项目. 公众号自 ...

随机推荐

  1. 织梦 dede runphp=yes SQL语句操作

    个人实例dede:channelartlist 下循环出 channel 栏目 中的 文章 {dede:sql sql='select * from dede_arctype where reid = ...

  2. MQTT 协议学习: QoS等级 与 会话

    背景 QoS 等级 与 通信的流程有关,直接影响了整个通信.而且篇幅比较长,所以我觉得应该单独拎出来讲一下. 概念 QoS 代表了 服务质量等级. 设置上,由2 位 的二进制控制,且值不允许为 3(0 ...

  3. [转载]@Component 和 @Bean 的区别

    @Component 和 @Bean 的区别 @Component 和 @Bean 的区别 Spring帮助我们管理Bean分为两个部分,一个是注册Bean,一个装配Bean. 完成这两个动作有三种方 ...

  4. 免费的 Linux 分区管理器使用介绍

    下面的列表没有特定的排名顺序.大多数分区工具应该存在于 Linux 发行版的仓库中. GParted 这可能是 Linux 发行版中最流行的基于 GUI 的分区管理器.你可能已在某些发行版中预装它.如 ...

  5. node - 处理跨域 ( 两行代码解决 )

    1,安装 cors 模块 : npm install cors 2,代码 : var express = require('express') var app = express() var cors ...

  6. WEB-INF

    WEB-INF下的内容是没有办法通过浏览器去请求的.可以把东西放在WEB-INF下面,避免用户直接通过浏览器请求.那些资源只允许通过url请求过来通过其他途径转发给用户. 比如WEB-INF/jsp/ ...

  7. c语言查漏补缺

    getchar:执行getchar()函数时,首先从输入缓存区读取字符,直到输入缓存区为空时才等待从键盘继续输入.scanf()之间不要有printf操作. 逗号表达式 a= (++a,1,2),只取 ...

  8. 我的博客 Hexo 还是Jekyll

    我的博客 Hexo 还是Jekyll 标签(空格分隔): 博客 很喜欢找一些博客主题,目前发现几个比较不错的 Hexo: 阿里中间件 我的个人博客-Material主题 我的个人博客-Fluid主题 ...

  9. 用ftp命令实现主机文件批量更新

    我们的主机环境是windows 2003,平时程序员访问都喜欢用远程桌面.简单快捷直观.不过我比较喜欢在本地用vim和命令行,这样编辑修改不需要受网络影响. 这种情况下,我本地调试的程序,要经常更新到 ...

  10. ACM-生化武器

    Description在一个封闭的房间里,gogo给大家表演了他的屁遁术,人果然一下没影了,但是他留下的“生化武器”,却以每秒1米的速度向上下左右扩散出去.为了知道自己会不会被“毒”到,你果断写了个算 ...