今天简单记录一下,利用Scala解答的一道LRU题目,原题为LeetCode的第146题,是一道设计LRU的题目。

题目详情

运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。

写入数据 put(key, value) - 如果密钥已经存在,则变更其数据值;如果密钥不存在,则插入该组「密钥/数据值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

进阶:

你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4

解答思路

这道题里,可以立即想到的是借助HashMap以及双向链表构建,更具体的分析可看LeetCode官方分析,在此不做赘述。

我的代码

对于Scala,由于其可以交叉使用Java的数据结构,因此在HashMap的构建部分,我也尝试了分别利用Scala自带的mutable.HashMap,以及Java当中的HashMap进行了比较,具体代码如下:

Scala的mutable.HashMap

import scala.collection.mutable.HashMap

class Node(var _key: Int, var _value: Int) {
var key = _key
var value = _value
var prev: Node = _
var next: Node = _
} class DoubleLinked() {
var head: Node = new Node(-1, -1)
var tail: Node = new Node(-1, -1)
head.next = tail
tail.prev = head def addNode(node: Node): Unit = {
head.next.prev = node
node.next = head.next
head.next = node
node.prev = head
} def updateTail(node: Node): Unit = {
tail.prev = node
node.next = tail
}
} class LRUCache(_capacity: Int) {
var cache: HashMap[Int, Node] = new HashMap[Int, Node]()
var dLinked = new DoubleLinked()
val capacity: Int = _capacity def get(key: Int): Int = {
if (!cache.contains(key)) {
return -1
}
updateSurroundings(cache(key))
dLinked.addNode(cache(key))
cache(key).value
} def put(key: Int, value: Int) {
if (cache.contains(key)) {
val node = cache(key)
node.value = value
updateSurroundings(node)
dLinked.addNode(node)
} else {
val node = new Node(key, value)
dLinked.addNode(node)
if (dLinked.tail.prev == dLinked.head) {
dLinked.tail.prev=node
node.next=dLinked.tail
}
cache.put(key,node) if(cache.size>capacity){
cache.remove(dLinked.tail.prev.key)
dLinked.updateTail(dLinked.tail.prev.prev)
dLinked.tail
}
}
} def updateSurroundings(node: Node): Unit = {
if (node.next == dLinked.tail) {
dLinked.tail.prev = node.prev
} node.prev.next = node.next
node.next.prev = node.prev
}
}

经提交测试,在LeetCode提交测试结果中,执行用时1628ms,占用内存82.9M

Java的HashMap

import java.util.HashMap

class Node(var _key: Int, var _value: Int) {
var key = _key
var value = _value
var prev: Node = _
var next: Node = _
} class DoubleLinked() {
var head: Node = new Node(-1, -1)
var tail: Node = new Node(-1, -1)
head.next = tail
tail.prev = head def addNode(node: Node): Unit = {
head.next.prev = node
node.next = head.next
head.next = node
node.prev = head
} def updateTail(node: Node): Unit = {
tail.prev = node
node.next = tail
}
} class LRUCache(_capacity: Int) {
var cache: HashMap[Int, Node] = new HashMap[Int, Node]()
var dLinked = new DoubleLinked()
val capacity: Int = _capacity def get(key: Int): Int = {
var node:Node = cache.get(key)
if (node == null) {
return -1
}
updateSurroundings(node)
dLinked.addNode(node)
node.value
} def put(key: Int, value: Int) {
if (cache.get(key)!=null) {
val node = cache.get(key)
node.value = value
updateSurroundings(node)
dLinked.addNode(node)
} else {
val node = new Node(key, value)
dLinked.addNode(node)
if (dLinked.tail.prev == dLinked.head) {
dLinked.tail.prev=node
node.next=dLinked.tail
}
cache.put(key,node) if(cache.size>capacity){
cache.remove(dLinked.tail.prev.key)
dLinked.updateTail(dLinked.tail.prev.prev)
dLinked.tail
}
}
} def updateSurroundings(node: Node): Unit = {
if (node.next == dLinked.tail) {
dLinked.tail.prev = node.prev
} node.prev.next = node.next
node.next.prev = node.prev
}
}

经提交测试,在LeetCode提交测试结果中,执行用时1456ms,占用内存83.9M

从上述的数据来看,两者运行时的占用内存相近,但是在速度上,使用Java的HashMap版本的代码,运行相对更快,所以有个猜想:如果在Scala代码中,直接使用Java原有的数据结构,是不是也同样会提高Scala代码的运行速度?

希望Scala方面的专家可以解答一下。

写一个LRU算法的记录的更多相关文章

  1. 面试题目:手写一个LRU算法实现

    一.常见的内存淘汰算法 FIFO  先进先出 在这种淘汰算法中,先进⼊缓存的会先被淘汰 命中率很低 LRU Least recently used,最近最少使⽤get 根据数据的历史访问记录来进⾏淘汰 ...

  2. 搞定redis面试--Redis的过期策略?手写一个LRU?

    1 面试题 Redis的过期策略都有哪些?内存淘汰机制都有哪些?手写一下LRU代码实现? 2 考点分析 1)我往redis里写的数据怎么没了? 我们生产环境的redis怎么经常会丢掉一些数据?写进去了 ...

  3. 【redis前传】自己手写一个LRU策略 | redis淘汰策略

    title: 自己手写一个LRU策略 date: 2021-06-18 12:00:30 tags: - [redis] - [lru] categories: - [redis] permalink ...

  4. 手写一个LRU工具类

    LRU概述 LRU算法,即最近最少使用算法.其使用场景非常广泛,像我们日常用的手机的后台应用展示,软件的复制粘贴板等. 本文将基于算法思想手写一个具有LRU算法功能的Java工具类. 结构设计 在插入 ...

  5. JS 实现一个 LRU 算法

    LRU 是 Least Recently Used 的缩写,即最近最少使用,是一种常用的页面置换算法,选择内存中最近最久未使用的页面予以淘汰. 可用的 NodeJS 库见node-lru-cache ...

  6. 动手写一个LRU缓存

    前言 LRU 是 Least Recently Used 的简写,字面意思则是最近最少使用. 通常用于缓存的淘汰策略实现,由于缓存的内存非常宝贵,所以需要根据某种规则来剔除数据保证内存不被占满. 在r ...

  7. python学习(5)写一个二分算法的程序

    把之前学习的做一个小结.之前看二分查找法,只能是似而非地看懂大概.现在用这么多天的知识积累已经可以自己写了. 而且在算法书的基础上,把需要找的数字做一个人机互动操作. 另外,初步接触到了 __name ...

  8. 4.redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下 LRU 代码实现?

    作者:中华石杉 面试题 redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下 LRU 代码实现? 面试官心理分析 如果你连这个问题都不知道,上来就懵了,回答不出来,那线上你写代码的时候,想当 ...

  9. GuavaCache学习笔记一:自定义LRU算法的缓存实现

    前言 今天在看GuavaCache缓存相关的源码,这里想到先自己手动实现一个LRU算法.于是乎便想到LinkedHashMap和LinkedList+HashMap, 这里仅仅是作为简单的复习一下. ...

随机推荐

  1. C++课程设计详解-12306的模拟实现

    目录 设计思路... 3 思路分析:.... 3 数据组织:.... 4 具体功能实现过程... 4 管理端具体功能实现:.... 4 用户端具体功能实现:.... 5 调试截图和调试过程中遇到的问题 ...

  2. 一只简单的网络爬虫(基于linux C/C++)————利用正则表达式解析页面

    我们向一个HTTP的服务器发送HTTP的请求后,服务器会返回可能一个HTML页面(当然也可以是其他的资源),我们可以利用返回的HTML页面,在其中寻找其他的Url,例如我们可以这样在浏览器上查看一下H ...

  3. 深度学习环境搭建:window10+CUDA10.0+CUDNN+pytorch1.2.0

    去年底入手一台联想Y7000P,配置了Nvidia GeForce GTX 1660 Ti GPU,GPU内存6G,但是因为有GPU服务器,所以一直没有在这台笔记本上跑过模型,如今经过一番折腾,终于在 ...

  4. E. Height All the Same

    E. Height All the Same 题目大意: 给你一个n*m 的矩阵,让你在里面填数字代表这个位置的高度,数字的范围是[L,R],有两种操作,第一种就是给一位置的高度加2,第二种就是给两个 ...

  5. E - Help Jimmy POJ - 1661 dp

    E - Help Jimmy POJ - 1661 这个题目本身不是很难,但是可以更加优化这个写法. 开始是n*n #include <cstdio> #include <cstri ...

  6. 201771010113 李婷华 《面向对象程序设计(java)》第九周总结

    一.理论知识部分 第六章 接口与内部类 1.内部类(innerclass)是定义在一个类内部的类.外层的类成为外部类(outerclass).内部类主要用于事件处理. 2.使用内部类的原因有以下三个: ...

  7. 第九章:Python高级编程-Python socket编程

    第九章:Python高级编程-Python socket编程 Python3高级核心技术97讲 笔记 9.1 弄懂HTTP.Socket.TCP这几个概念 Socket为我们封装好了协议 9.2 cl ...

  8. MySQL数据类型笔记

    引言 作为一个做Java后端的开发者,无论是在自己平时项目学习实战还是工作中的真实项目,都离不开和数据库打交道.而MySQL作为当今最流行的关系型数据库之一,也成为了我们必须掌握的一门技术.最近在工作 ...

  9. 【Hadoop离线基础总结】Hue与Impala集成

    Hue与Impala集成 1.修改hue.ini配置文件 [impala] server_host=node03 server_port=21050 impala_conf_dir=/etc/impa ...

  10. MongoDB最佳安全实践

    在前文[15分钟从零开始搭建支持10w+用户的生产环境(二)]中提了一句MongoDB的安全,有小伙伴留心了,在公众号后台问.所以今天专门开个文,写一下关于MongoDB的安全. 一.我的一次Mong ...