ES[7.6.x]学习笔记(十)聚合查询
聚合查询,它是在搜索的结果上,提供的一些聚合数据信息的方法。比如:求和、最大值、平均数等。聚合查询的类型有很多种,每一种类型都有它自己的目的和输出。在ES中,也有很多种聚合查询,下面我们看看聚合查询的语法结构,
"aggregations" : {
"<aggregation_name>" : {
"<aggregation_type>" : {
<aggregation_body>
}
[,"meta" : { [<meta_data_body>] } ]?
[,"aggregations" : { [<sub_aggregation>]+ } ]?
}
[,"<aggregation_name_2>" : { ... } ]*
}
aggregations
实体包含了所有的聚合查询,如果是多个聚合查询可以用数组,如果只有一个聚合查询使用对象,aggregations
也可以简写为aggs
。aggregations
里边的每一个聚合查询都有一个逻辑名称,这个名称是用户自定义的,在我们的语法结构中,对应的是<aggregation_name>
。比如我们的聚合查询要计算平均价格,这时我们自定义的聚合查询的名字就可以叫做avg_price
,这个名字要在聚合查询中保持唯一。
在自定义的聚合查询对象中,需要指定聚合查询的类型,这个类型字段往往是对象中的第一个字段,在上面的语法结构中,对应的是<aggregation_type>
。在聚合查询的内部,还可以有子聚合查询,对应的是aggregations
,但是只有Bucketing
类型的聚合查询才可以有子聚合查询。
metrics 聚合查询
metrics 我觉得在这里翻译成“指标”比较好,也不是太准确,我们还是用英文比较好。metrics 聚合查询的值都是从查询结果中的某一个字段(field)提炼出来的,下面我们就看看一些常用的metrics 聚合查询。我们有如下的一些索引数据,大家先看一下,
索引的名字叫做bank
,一些关键的字段有account_number
银行账号,balance
账户余额,firstname
和lastname
等,大家可以直接看出它们代表的含义。假如我们想看看银行里所有人的平均余额是多少,那么查询的语句该怎么写呢?
POST /bank/_search
{
"query": {
"bool": {
"must": {
"match_all": {}
}
}
},
"aggs": {
"avg_balance": {
"avg": {
"field": "balance"
}
}
}
}
在查询语句中,查询的条件匹配的是全部,在聚合查询中,我们自定义了一个avg_balance
的聚合查询,它的类型是avg
,求平均数,然后我们指定字段是balance
,也就是我们要计算平均数的字段。我们执行一下,然后看看返回的结果,
{
"took": 11,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": ……
"aggregations": {
"avg_balance": {
"value": 25714.837
}
}
}
在返回的结果中,我们看到在aggregations
中,返回了我们自定义的聚合查询avg_balance
,并且计算的平均值是25714.837
。
如果我们要查询balance
的最大、最小、平均、求和、数量等,可以使用stats
查询,我们来看一下如何发送这个请求,
POST /bank/_search
{
"query": {
"bool": {
"must": {
"match_all": {}
}
}
},
"aggs": {
"stats_balance": {
"stats": {
"field": "balance"
}
}
}
}
我们只需要把前面聚合查询的类型改为stats
就可以了,我们看一下返回的结果,
{
"took": 20,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": ……
"aggregations": {
"stats_balance": {
"count": 1000,
"min": 1011,
"max": 49989,
"avg": 25714.837,
"sum": 25714837
}
}
}
我们可以看到在返回的结果中,返回了5个字段,我们最常用的最大、最小、平均、求和、数量都包含在内,很方便是不是。
Bucket 聚合查询
Bucket 聚合不像metrics 那样基于某一个值去计算,每一个Bucket (桶)是按照我们定义的准则去判断数据是否会落入桶(bucket)中。一个单独的响应中,bucket(桶)的最大个数默认是10000,我们可以通过serarch.max_buckets
去进行调整。
如果从定义来看,理解Bucket聚合查询还是比较难的,而且Bucket聚合查询的种类也有很多,给大家一一介绍不太可能,我们举两个实际中用的比较多的例子吧。在上面的metrics 聚合中,我们可以查询到数量(count),但是我们能不能分组呢?是不是和数据库中的group by
联系起来了?对,Bucket 聚合查询就像是数据库中的group by
,我们还用上面银行的索引,比如说我们要看各个年龄段的存款人数,那么查询语句我们该怎么写呢?这里就要使用Bucket 聚合中的Terms聚合查询,查询语句如下:
POST /bank/_search
{
"query": {
"bool": {
"must": {
"match_all": {}
}
}
},
"aggs": {
"ages": {
"terms": {
"field": "age"
}
}
}
}
其中,ages
是我们定义的聚合查询的名称,terms
指定要分组的列,我们运行一下,看看结果,
……
{
"aggregations": {
"ages": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 463,
"buckets": [
{
"key": 31,
"doc_count": 61
}
,
{
"key": 39,
"doc_count": 60
}
,
{
"key": 26,
"doc_count": 59
}
,
{
"key": 32,
"doc_count": 52
}
,
{
"key": 35,
"doc_count": 52
}
,
{
"key": 36,
"doc_count": 52
}
,
{
"key": 22,
"doc_count": 51
}
,
{
"key": 28,
"doc_count": 51
}
,
{
"key": 33,
"doc_count": 50
}
,
{
"key": 34,
"doc_count": 49
}
]
}
}
我们可以看到在返回的结果中,每个年龄的数据都汇总出来了。假如我们要看每个年龄段的存款余额,该怎么办呢?这里就要用到子聚合查询了,在Bucket 聚合中,再加入子聚合查询了,我们看看怎么写,
POST /bank/_search
{
"query": {
"bool": {
"must": {
"match_all": {}
}
}
},
"aggs": {
"ages": {
"terms": {
"field": "age"
},
"aggs": {
"sum_balance": {
"sum": {
"field": "balance"
}
}
}
}
}
}
我们在聚合类型terms
的后面又加了子聚合查询,在子聚合查询中,又自定义了一个sum_balance
的查询,它是一个metrics
聚合查询,要对字段balance
进行求和。我们运行一下,看看结果。
"aggregations": {
"ages": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 463,
"buckets": [
{
"key": 31,
"doc_count": 61,
"sum_balance": {
"value": 1727088
}
}
,
{
"key": 39,
"doc_count": 60,
"sum_balance": {
"value": 1516175
}
}
,
{
"key": 26,
"doc_count": 59,
"sum_balance": {
"value": 1368494
}
}
,
{
"key": 32,
"doc_count": 52,
"sum_balance": {
"value": 1245470
}
}
,
{
"key": 35,
"doc_count": 52,
"sum_balance": {
"value": 1151108
}
}
,
{
"key": 36,
"doc_count": 52,
"sum_balance": {
"value": 1153085
}
}
,
{
"key": 22,
"doc_count": 51,
"sum_balance": {
"value": 1261285
}
}
,
{
"key": 28,
"doc_count": 51,
"sum_balance": {
"value": 1441968
}
}
,
{
"key": 33,
"doc_count": 50,
"sum_balance": {
"value": 1254697
}
}
,
{
"key": 34,
"doc_count": 49,
"sum_balance": {
"value": 1313688
}
}
]
}
}
我们看到返回结果中,增加了我们定义的sum_balance
字段,它是balance
余额的汇总。这个例子我们应该对bucket(桶)这个概念有了一个非常形象的认识了。还有一些其他的bucket聚合查询,这里就不给大家一一介绍了,比如:我们只想查某几个年龄段的余额汇总,就可以使用filters-aggregation
。
好了,ES的一些基本的聚合查询就给大家介绍到这里了,如果要用到一些其他的聚合查询,可以参照ES的官方文档。
ES[7.6.x]学习笔记(十)聚合查询的更多相关文章
- Hibernate学习笔记(十) — HQL查询
一.HQL的一对多查询 班级(1)->(多)学生 /** * 实现Classes与Student的内连接 * * SELECT c.*,s.* * from classes c INNER JO ...
- python3.4学习笔记(十四) 网络爬虫实例代码,抓取新浪爱彩双色球开奖数据实例
python3.4学习笔记(十四) 网络爬虫实例代码,抓取新浪爱彩双色球开奖数据实例 新浪爱彩双色球开奖数据URL:http://zst.aicai.com/ssq/openInfo/ 最终输出结果格 ...
- Learning ROS for Robotics Programming Second Edition学习笔记(十) indigo Gazebo rviz slam navigation
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 moveit是书的最后一章,由于对机械臂完全不知,看不懂 ...
- python3.4学习笔记(十八) pycharm 安装使用、注册码、显示行号和字体大小等常用设置
python3.4学习笔记(十八) pycharm 安装使用.注册码.显示行号和字体大小等常用设置Download JetBrains Python IDE :: PyCharmhttp://www. ...
- python3.4学习笔记(十九) 同一台机器同时安装 python2.7 和 python3.4的解决方法
python3.4学习笔记(十九) 同一台机器同时安装 python2.7 和 python3.4的解决方法 同一台机器同时安装 python2.7 和 python3.4不会冲突.安装在不同目录,然 ...
- python3.4学习笔记(十六) windows下面安装easy_install和pip教程
python3.4学习笔记(十六) windows下面安装easy_install和pip教程 easy_install和pip都是用来下载安装Python一个公共资源库PyPI的相关资源包的 首先安 ...
- python3.4学习笔记(十五) 字符串操作(string替换、删除、截取、复制、连接、比较、查找、包含、大小写转换、分割等)
python3.4学习笔记(十五) 字符串操作(string替换.删除.截取.复制.连接.比较.查找.包含.大小写转换.分割等) python print 不换行(在后面加上,end=''),prin ...
- python3.4学习笔记(十二) python正则表达式的使用,使用pyspider匹配输出带.html结尾的URL
python3.4学习笔记(十二) python正则表达式的使用,使用pyspider匹配输出带.html结尾的URL实战例子:使用pyspider匹配输出带.html结尾的URL:@config(a ...
- python3.4学习笔记(十) 常用操作符,条件分支和循环实例
python3.4学习笔记(十) 常用操作符,条件分支和循环实例 #Pyhon常用操作符 c = d = 10 d /= 8 #3.x真正的除法 print(d) #1.25 c //= 8 #用两个 ...
随机推荐
- memcached 原子性操作 CAS模式
2019独角兽企业重金招聘Python工程师标准>>> 应用场景分析: 如原来MEMCACHED中的KES的内容为A,客户端C1和客户端C2都把A取了出来,C1往准备往其中加B,C2 ...
- 搭建vsftpd文件服务器并创建虚拟用户
一.安装 1. 查看是否安装vsftpd rpm -qa | grep vsftpd 2. 安装 yum -y install vsftpd ...
- STL训练 HDU - 1716 Ray又对数字的列产生了兴趣:
HDU - 1716 Ray又对数字的列产生了兴趣: 现有四张卡片,用这四张卡片能排列出很多不同的4位数,要求按从小到大的顺序输出这些4位数. Input 每组数据占一行,代表四张卡片上的数字(0&l ...
- CF思维联系–CodeForces - 225C. Barcode(二路动态规划)
ACM思维题训练集合 Desciption You've got an n × m pixel picture. Each pixel can be white or black. Your task ...
- Vxlan L2
VXLAN(Virtual eXtensible LAN可扩展虚拟局域网)诞生了,基于IP网络之上,采用的是MAC in UDP技术 跨三层实现二层通信 总结为何需要Vxlan: 虚拟机规模受到网络规 ...
- 也谈解决Combobox绑定数据后取值出现System.Data.DataRowView的问题
刚才遇到一个怪现象:同一个窗口,同一张表,通过第一个Combobox值的改变,动态绑定第二个Combobox,结果出现一个怪现象,第一个Combobox有的值改变第二个Combobox一切正常,有几个 ...
- Spring Framework 之AOP
Spring Framework 之AOP 目录 Spring Framework 之AOP 问题 AOP概述 AOP知识 1.连接点(Joinpoint) 2.切点(PointCut) 3.增强(A ...
- bootstrap 怎么制作好看的表格
bootstrap 怎么制作表格 bootstrap 制作表格带有图文形式.主要知识点有以下几点 第一点肯定是写出一个普通的表格,这一点可以去菜鸟复制它的案例.添加tr和td就可以了 在表格放入图片加 ...
- Q - Play With Sequence HDU - 3971 线段树 重新排序建树
Q - Play With Sequence HDU - 3971 这个题目是一个线段树,比较特别的线段树,就是c询问一定次数之后重新排序建树来优化减低复杂度. 第一次碰到这种题目有点迷. 这个题目写 ...
- Collections集合工具类常用的方法
java.utils.Collections //是集合工具类,用来对集合进行操作.部分方法如下: public static <T> boolean addAll(Collection& ...