题意:要从起点的石头跳到终点的石头,设The frog distance为从起点到终点的某一路径中两点间距离的最大值,问在从起点到终点的所有路径中The frog distance的最小值为多少。

分析:

解法一:Dijkstra,修改最短路模板,d[u]表示从起点到u的所有路径中两点间距离的最大值的最小值。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-15;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 200 + 10;
const int MAXT = 10000 + 10;
using namespace std;
struct Edge{
int from, to;
double dist;
Edge(int f, int t, double d):from(f), to(t), dist(d){}
};
struct HeapNode{
double d;
int u;
HeapNode(double dd, int uu):d(dd), u(uu){}
bool operator < (const HeapNode& rhs)const{
return d > rhs.d;
}
};
struct Dijkstra{
int n, m;
vector<Edge> edges;
vector<int> G[MAXN];
double d[MAXN];
bool done[MAXN];
void init(int n){
this -> n = n;
for(int i = 0; i <= n; ++i) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, double dist){
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m - 1);
}
void dijkstra(int s){
priority_queue<HeapNode> Q;
for(int i = 0; i <= n; ++i){
d[i] = 10000000.0;
}
memset(done, false, sizeof done);
d[s] = 0;
Q.push(HeapNode(0, s));
while(!Q.empty()){
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if(done[u]) continue;
done[u] = true;
for(int i = 0; i < G[u].size(); ++i){
Edge &e = edges[G[u][i]];
double tmp = max(d[u], e.dist);
if(tmp < d[e.to]) {
d[e.to] = tmp;
Q.push(HeapNode(d[e.to], e.to));
}
}
}
}
}dij;
struct Node{
int x, y;
void read(){
scanf("%d%d", &x, &y);
}
}num[MAXN];
double getD(Node& a, Node &b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
int main(){
int n;
int kase = 0;
while(scanf("%d", &n) == 1){
if(!n) return 0;
for(int i = 0; i < n; ++i) num[i].read();
dij.init(n);
for(int i = 0; i < n; ++i){
for(int j = i + 1; j < n; ++j){
double d = getD(num[i], num[j]);
dij.AddEdge(i, j, d);
dij.AddEdge(j, i, d);
}
}
dij.dijkstra(0);
printf("Scenario #%d\nFrog Distance = %.3f\n\n", ++kase, dij.d[1]);
}
return 0;
}

解法二:flod,pic[i][j]表示从i到j的所有路径中两点间距离的最大值的最小值。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 200 + 10;
const int MAXT = 10000 + 10;
using namespace std;
double pic[MAXN][MAXN];
struct Node{
int x, y;
void read(){
scanf("%d%d", &x, &y);
}
}num[MAXN];
double getD(Node& a, Node &b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
int main(){
int n;
int kase = 0;
while(scanf("%d", &n) == 1){
if(!n) return 0;
for(int i = 0; i < n; ++i) num[i].read();
for(int i = 0; i < n; ++i){
for(int j = i + 1; j < n; ++j){
double d = getD(num[i], num[j]);
pic[i][j] = pic[j][i] = d;
}
}
for(int k = 0; k < n; ++k){
for(int i = 0; i < n; ++i){
for(int j = i + 1; j < n; ++j){
if(pic[i][k] < pic[i][j] && pic[k][j] < pic[i][j]){
pic[j][i] = pic[i][j] = max(pic[i][k], pic[k][j]);
}
}
}
}
printf("Scenario #%d\nFrog Distance = %.3f\n\n", ++kase, pic[0][1]);
}
return 0;
}

  

POJ - 2253 Frogger(最短路Dijkstra or flod)的更多相关文章

  1. POJ 2253 Frogger -- 最短路变形

    这题的坑点在POJ输出double不能用%.lf而要用%.f...真是神坑. 题意:给出一个无向图,求节点1到2之间的最大边的边权的最小值. 算法:Dijkstra 题目每次选择权值最小的边进行延伸访 ...

  2. POJ 2253 Frogger 最短路 难度:0

    http://poj.org/problem?id=2253 #include <iostream> #include <queue> #include <cmath&g ...

  3. POJ 2253 Frogger (最短路)

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 28333   Accepted: 9208 Descript ...

  4. poj 2253 Frogger(最短路 floyd)

    题目:http://poj.org/problem?id=2253 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元 ...

  5. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

  6. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  7. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

  8. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

  9. POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)

    POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...

  10. poj 2253 Frogger (dijkstra最短路)

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

随机推荐

  1. 第1节 storm编程:8、storm的分发策略

    8. Storm的分发策略 Storm当中的分组策略,一共有八种: 所谓的grouping策略就是在Spout与Bolt.Bolt与Bolt之间传递Tuple的方式.总共有八种方式: 1)shuffl ...

  2. Redis的两个典型应用场景

    Redis简介 Redis是目前业界使用最广泛的内存数据存储.相比memcached,Redis支持更丰富的数据结构,例如hashes, lists, sets等,同时支持数据持久化.除此之外,Red ...

  3. 「SCOI2005」栅栏

    传送门 Luogu 解题思路 我们有很显然的这样一条贪心思路: 首先满足长度短的木板,因为如果可以满足长的也肯定可以满足短的,而且可能满足更多. 那么我们就会有这样的思路:枚举一条木板由哪条木板切割而 ...

  4. 如何利用TableView显示自定义nib中创建的UITableViewCell或子类?

    1.创建nib文件 cell.xib 2.在nib中拖一个UITableView出来,设置其reuse Identifier,再根据cell UI需要拖出view摆放好 3.创建ViewControl ...

  5. Matplotlib 饼图

    章节 Matplotlib 安装 Matplotlib 入门 Matplotlib 基本概念 Matplotlib 图形绘制 Matplotlib 多个图形 Matplotlib 其他类型图形 Mat ...

  6. 2017北京网络赛 F Secret Poems 蛇形回路输出

    #1632 : Secret Poems 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 The Yongzheng Emperor (13 December 1678 – ...

  7. python-python基础3

    本章内容: 函数 递归 高阶函数 一.函数 一个函数一般完成一项特定的功能 函数使用     函数需要先定义     使用函数,调用

  8. java.jvm调优

    _amazing~ 基本: 整理:

  9. springboot 中单机 redis 实现分布式锁

    在微服务中经常需要使用分布式锁,来执行一些任务.例如定期删除过期数据,在多个服务中只需要一个去执行即可. 以下说明非严格意义的分布式锁,因为 redis 实现严格意义的分布式锁还是比较复杂的,对于日常 ...

  10. Oracle--sqlplus--常用命令

    登陆:win+R输入sqlplus即可 如果前期没有用户可以输入sqlplus /nolog  记得sqlplus后有一个空格 --格式化命令 进行数据查询时,默认的方式排版会很乱,如果我们要解决这个 ...