matplotlib是python中的一个画图库,继承了matlib(从名字上也看得出来)的优点和语法,所以对于熟悉matlib的用户来说是十分友好的。

pylab和pyplot

关于pylab和pyplot,人们做过不少的讨论。这两个模块有哪些不同呢?pylab模块跟matplotlib一起安装,而pyplot则是matplotlib的内部模块。两者的导入方法有所不同,可选择其中一种进行导入。

from pylab import *
#或
import matplotlib.pyplot as plt
import numpy as np

pylab在同一命名空间整合了pyplot和Numpy的功能,因此无需再单独导入Numpy。更进一步来说,导入pylab后,pyplot和Numpy的函数就可以直接调用,而不用再指定其所属模块(命名空间),从而使得matplotlib开发环境更像是Matlab。

plot(x,y)
array([1,2,3,4])
#而不用指定模块名称
plt.plot()
np.array([1,2,3,4])

大多情况下,我们更乐意使用pyplot模块。

线状图

这里我使用jupyter来进行演示

ipython qtconsole --matplotlib inline

用matplotlib生成这个图表很简单,一行代码就能搞定

plt.plot([1,2,3,4])
plt.show()

如图所示,生成了一个Line2D对象。该对象为一条直线,它表示图表中各数据点的线性延伸趋势。我们可以看出,列表中的数据直接被作为y轴的值展示了出来,x周是从0开始的,所以我们要看一个数据的折线图,只用输入一个list即可。

但我们可以看出这个图可能还很简陋,比如有如下几个问题:

  • y轴显示为啥是0.5为步长间隔,我想以1为步长间隔
  • 我想控制x轴展示的值,而不是从0开始
  • 图太小了,能否控制大小
  • x轴和y轴字太小了,能否控制大小
  • 给x轴和y轴命个名吧
  • 没有网格看不清
  • 没有图例
  • 给线状图标上点
  • 我想保存图片到本地
  • 怎么画子图呢

接下来我们就一个一个解决。

1.设置x轴和y轴步长间隔

控制x轴,y轴显示的值,有两个参数

  • xticks(ticks, [labels], **kwargs)

  • yticks(ticks, [labels], **kwargs)

    • ticks:控制显示的位置,也就是显示那几个值,这几个值必须在y值数据的范围内,这里也就是[1,4]这个范围。
    • [labels]:控制显示在对应位置的值,可以是数也可以是字符。
y = [1,2,3,4]
step = 1
plt.yticks([i for i in y if i%step == 0])
plt.plot(y)

2.x轴展示的值

这里展示了坐标轴显示字符的情况。

注意第五行,我改成了[1,2,3,3.5,4],所以显示出来就多了个3.5。

y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls)
plt.yticks([1,2,3,3.5,4])
plt.plot(y)

3.控制图表大小

控制图表的大小要用到的几个方法

  • rcParams:这个参数是用来设置一些配置参数的,比如这里我就用到了大小和dpi

    • figure.figsize:控制大小,参数为一个二元组(x,y),即长、宽
    • figure.dpi:控制dpi
plt.rcParams['figure.figsize'] = (10,5)
plt.rcParams['figure.dpi'] = 200
y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls)
plt.yticks([1,2,3,3.5,4])
plt.plot(y)

这里可以看出更大更清晰了

4.调节x轴和y轴字体大小

这里控制字体大小用到的也是xticksyticks,只不过使用到了fontsize参数。

plt.rcParams['figure.figsize'] = (10,5)
plt.rcParams['figure.dpi'] = 200
y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls,fontsize=20)
plt.yticks([1,2,3,3.5,4],fontsize=20)
plt.plot(y)

5.给x轴和y轴加上名字

使用

  • xlabel(str,fontsize=int )
  • ylabel(str,fontsize=int )
plt.rcParams['figure.figsize'] = (10,5)
plt.rcParams['figure.dpi'] = 200
y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls,fontsize=20)
plt.yticks([1,2,3,3.5,4],fontsize=20)
plt.xlabel("核心价值观", fontsize=20)
plt.ylabel("顺序", fontsize=20)
plt.plot(y)

6.加上网格

  • plt.grid(True),加上横纵两种网格。
  • plt.grid(True,axis="x"),加上x轴网格。
plt.rcParams['figure.figsize'] = (10,5)
plt.rcParams['figure.dpi'] = 200
y = [1,2,3,4]
scale_ls = range(4)
index_ls = ["富强","民主","文明","和谐"]
plt.xticks(scale_ls,index_ls,fontsize=20)
plt.yticks([1,2,3,3.5,4],fontsize=20)
plt.xlabel("核心价值观", fontsize=20)
plt.ylabel("顺序", fontsize=20)
plt.grid(True,axis="both")
plt.plot(y)

7.加上图例

使用legend方法,里面有这么几个参数

  • handles:代表使用的是那几个曲线的对象
  • labels:代表对应的图例文字
  • loc:放置的位置
  • prop:额外参数,例如size,控制图例大小
t = np.arange(0, 2.5, 0.01)
y1 = map(math.sin, math.pi*t)
y2 = map(math.cos, math.pi*t)
l1, = plt.plot(list(y1))
l2, = plt.plot(list(y2))
plt.legend(handles = [l1, l2], labels = ['Sin', 'Cos'], loc = 'best', prop={'size': 20})

8.给线状图标点

只用在plot加入参数marker 即可

t = np.arange(0, 2.5, 0.1)
y1 = map(math.sin, math.pi*t)
y2 = map(math.cos, math.pi*t)
l1, = plt.plot(list(y1), marker = "o")
l2, = plt.plot(list(y2), marker = "*")
plt.legend(handles = [l1, l2], labels = ['Sin', 'Cos'], loc = 'best', prop={'size': 20})

9.保存图片到本地

只用在最后使用savefig 方法

plt.savefig('test.png',dpi=400)

10.画子图

这里使用到了subplot方法

他有三个参数,分别为

  • 几行
  • 几列
  • 第几个

举个栗子

  1. subplot(2,2,1) 2行2列(即子图排列为田字格形状)第一个
  2. subplot(2,1,2) 2行1列(即子图排列为纵向两个图形状)第二个
t = np.arange(0, 2.5, 0.1)
y1 = map(math.sin, math.pi*t)
y2 = map(math.cos, math.pi*t) plt.subplot(2, 1, 1)
plt.title("Sin", fontsize=20)
l1, = plt.plot(list(y1), marker = "o") plt.subplot(2, 1, 2)
plt.title("Cos", fontsize=20)
l2, = plt.plot(list(y2), marker = "*")

这里我还使用到了title方法,给对应图表加上了标题。

利用matplotlib进行数据可视化的更多相关文章

  1. 基于matplotlib的数据可视化 - 笔记

    1 基本绘图 在plot()函数中只有x,y两个量时. import numpy as np import matplotlib.pyplot as plt # 生成曲线上各个点的x,y坐标,然后用一 ...

  2. matplotlib实现数据可视化

    一篇matplotlib库的学习博文.matplotlib对于数据可视化非常重要,它完全封装了MatLab的所有API,在python的环境下和Python的语法一起使用更是相得益彰. 一.库的安装和 ...

  3. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  4. 使用 jupyter-notebook + python + matplotlib 进行数据可视化

    上次用 python 脚本中定期查询数据库,监视订单变化,将时间与处理完成订单的数量进行输入写入日志,虽然省掉了人为定时查看数据库并记录的操作,但是数据不进行分析只是数据,要让数据活起来! 为了方便看 ...

  5. 如何最简便的利用Python实现数据可视化?当然离不开matplotlib!

    01|Figure和Subplot: matplotlib的图像全部在figure对象里面,就像是一片画布.figsize是figure的一个设置大小的属性.一个figure里面可以有无数个subpl ...

  6. 『Matplotlib』数据可视化专项

    一.相关知识 官网介绍 matplotlib API 相关博客 matplotlib绘图基础 漂亮插图demo 使用seaborn绘制漂亮的热度图 fig, ax = plt.subplots(2,2 ...

  7. 基于matplotlib的数据可视化 - 等高线 contour 与 contourf

    contour 与contourf 是绘制等高线的利器. contour  - 绘制等高线 contourf - 填充等高线 两个的返回值值是一样的(return values are the sam ...

  8. 利用pyecharts将数据可视化

    可视化展示在数据分析领域中是一个至关重要的点,好的可视化展示对我们的结果分析有更好的支持作用. 一.问题 在数据分析的时代里面我们需要将数据的可视化展现出来,更加方便用户的观察.如下图 有些时候我们需 ...

  9. 用matplotlib对数据可视化

    下图是要用到的数据集,反映了从1984到2016年的失业率的变化 1.导入可视化模块import matlibplot.pyplot as plt, 函数plt.plot(x, y)确定折线图的点,x ...

随机推荐

  1. JavaScript下判断元素是否存在

    1. 判断表单元素是否存在(一) if("periodPerMonth" in document.theForm) { return true; } else{ return fa ...

  2. git clone 拉取github上面的代码报错:fatal: Authentication failed for xxx解决

    1.打开git bash,输入密码:git config --system --unset credential.helper2.结果报错:error: could not lock config f ...

  3. zabbix监控Linux服务器CPU使用率大于40%的时候报警(实践版)

    zabbix自带的模板里面有监控项,所以监控项就不用创建了,直接创建触发器就可以了,触发器细节如下: 名称:CPU使用率大于40% 严重性:严重 表达式:{121.201.54.50:system.c ...

  4. Perl语言入门:第九章 使用正则表达式处理文本 示例程序和代码

    #! /usr/bin/perl use strict; use warnings; print "\n----------------------------------_substitu ...

  5. 《C程序设计语言》练习1-5

    #include<stdio.h> /*修改温度转换程序,要求以逆序(即按照从300度到0度的顺序)打印温度转换表*/ main () { float fahr,celsius; int ...

  6. form中采用图片作为提交按钮

    <span style="font-size:14px;"><FORM name="formName" action="xxxx&q ...

  7. 认识shell

    博主本人平和谦逊,热爱学习,读者阅读过程中发现错误的地方,请帮忙指出,感激不尽 认识shell 一.由来 第一个流行的 shell 是由 Steven Bourne 发展出来的,为了纪念他所以就称为 ...

  8. Python爬虫带用户名密码登录

    # -*- coding: utf-8 -*- """ Created on Wed Jun 6 13:18:58 2018 @author: Lenovo " ...

  9. js - __proto__ 、 prototype和constructor

    零.资料与前言 0x1 材料: 1.帮你彻底搞懂JS中的prototype.__proto__与constructor(图解) 0x2 前言 之前也尝试总结过 js 中的 __proto__ . pr ...

  10. Java IO: 字节和字符数组

    原文链接  作者: Jakob Jenkov   译者:homesick 内容列表 从InputStream或者Reader中读入数组 从OutputStream或者Writer中写数组 在java中 ...