VI.应用-Trajectory Data Mining
$textbf{Trajectory Data Mining: An Overview}$
很好的一篇概述,清晰明了地阐述了其框架,涉及内容又十分宽泛。值得细读。
未完成,需要补充。
- $textbf{Trajectory Data}$:主要分为四个类别
- $texttt{Mobility of people}$
- $texttt{Mobility of transportation}$
- $texttt{Mobility of animals}$
- $texttt{Mobility of natural phenomena}$
- $textbf{Trajectory Data Preprocessing}$
- $texttt{Noise Filtering}$
- $textit{Mean Filter}$
- $textit{Kalman and Particle Filters}$
- $textit{Heuristics-Based Outlier Detection}$
- $texttt{Stay Point Detection}$
- $texttt{Trajectory Compression}$:对轨迹数据进行压缩,以减少计算量
- $textit{Distance Metric}$
- $textit{Offline Compression}$
- $textit{Online Data Reduction}$
- $textit{Compression with Semantic Meaning}$
- $texttt{Trajectory Segmentation}$:对轨迹数据进行切割
- $textit{time interval}$
- $textit{shape of a trajectory}$
- $textit{semantic meanings}$
- $texttt{Map Matching}$:对原始的经纬度数据转化为路网数据
- $textit{geometric}$
- $textit{topological}$
- $textit{probabilis 大专栏 VI.应用-Trajectory Data Miningtic}$
- $textit{other advanced techniques}$
- $texttt{Noise Filtering}$
- $textbf{Trajectory Data Management}$
- $texttt{Trajectory Indexing and Retrieval}$:没看懂是为了解决什么问题
- $texttt{Distance/Similarity of Trajectories}$:了解一下度量方式
- $textbf{Uncertainty in Trajectory Data}$
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textit{Modeling Uncertainty of a Trajectory for Queries}$
- $textit{Path Inference from Uncertain Trajectories}$
- $texttt{Privacy of Trajectory Data}$:为保护隐私性,需要增大数据的不确定性。
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textbf{Trajectory Pattern Mining}$
- $texttt{Moving Together Patterns}$
- $texttt{Trajectory Clustering}$
- $texttt{Mining Sequential Patterns from Trajectories}$
- $texttt{Mining Periodical Patterns from Trajectories
}$
- $textbf{Trajectory Classification}$:做运动状态分类、交通方式分类等分类任务
- $textbf{Anomalies Detection From Trajectories}$
- $texttt{Detecting Outlier Trajectories}$
- $texttt{Identifying Anomalous Events by Trajectories}$
- $textbf{Transfer Trajectory To Other Representations}$
- $texttt{From Trajectory to Graph}$
- $texttt{From Trajectory to Matrix}$
- $texttt{From Trajectory to Tensor}$
VI.应用-Trajectory Data Mining的更多相关文章
- Distributed Databases and Data Mining: Class timetable
Course textbooks Text 1: M. T. Oszu and P. Valduriez, Principles of Distributed Database Systems, 2n ...
- What is the most common software of data mining? (整理中)
What is the most common software of data mining? 1 Orange? 2 Weka? 3 Apache mahout? 4 Rapidminer? 5 ...
- What’s the difference between data mining and data warehousing?
Data mining is the process of finding patterns in a given data set. These patterns can often provide ...
- A web crawler design for data mining
Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...
- Datasets for Data Mining and Data Science
https://github.com/mattbane/RecommenderSystem http://grouplens.org/datasets/movielens/ KDDCUP-2012官网 ...
- cluster analysis in data mining
https://en.wikipedia.org/wiki/K-means_clustering k-means clustering is a method of vector quantizati ...
- Weka 3: Data Mining Software in Java
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
随机推荐
- jexus+.netcore+identityserver4 部署支持ssl(https)
硬件环境: 在阿里云购买了一个centos 7 64 位服务器 软件: jexus ,dotnet core sdk 第一步安装dotnet core sdk: 先安装dotnet core sdk ...
- @ResponseBody与@RestController
@ResponseBody与@RestController的作用与区别 https://blog.csdn.net/xfl4629712/article/details/78528387
- RDD(六)——分区器
RDD的分区器 Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数.RDD中每条数据经过Shuffle过 ...
- Opencv笔记(二):图像的基本操作——续写
1.图像的透视变换 对于视角变换,我们需要一个 3x3 变换矩阵.在变换前后直线还是直线.要构建这个变换矩阵,你需要在输入图像上找 4 个点,以及他们在输出图像上对应的位置.这四个点中的任意三个都不能 ...
- BaseAdapter教程(2) BaseAdapter的notifyDataSetChanged动态刷新
遇到了这麽一个需求,ListView滑到最底,然后会自动在底部加入新的Cell,实现动态刷新. 1. 首先,为ListView加上setOnScrollListener. lvHomePostItem ...
- static及final知识点整理
final在Java中是一个保留的关键字,可以声明成员变量.方法.类以及本地变量.一旦你将引用声明作final,你将不能改变这个引用了,编译器会检查代码,如果你试图将变量再次初始化的话,编译器会报编译 ...
- 给创业公司CEO的临别赠言
一别两宽,各生欢喜 2018年2月8日,我在这个公司的最后一天,三年半. 还记得2014年,在三里屯SOHO的某个咖啡厅中,你自信飞扬的脸和眼睛里暗夜星辰般的闪亮的希冀让我久久无法平静.终于在某一个耀 ...
- 30)PHP,引用对象和克隆对象的区别
复制文件.建立快捷方式的区别,克隆就是复制,引用就是快捷方式,引用的对象实际上同一个东西,修改任何一个变量,另外一个也会跟着变化.
- K - Wand(组合数+错排公式)
N wizards are attending a meeting. Everyone has his own magic wand. N magic wands was put in a line, ...
- Codeforces Round #598 (Div. 3)E(dp路径转移)
题:https://codeforces.com/contest/1256/problem/E 题意:给一些值,代表队员的能力值,每组要分3个或3个以上的人,然后有个评价值x=(队里最大值-最小值), ...