VI.应用-Trajectory Data Mining
$textbf{Trajectory Data Mining: An Overview}$
很好的一篇概述,清晰明了地阐述了其框架,涉及内容又十分宽泛。值得细读。
未完成,需要补充。
- $textbf{Trajectory Data}$:主要分为四个类别
- $texttt{Mobility of people}$
- $texttt{Mobility of transportation}$
- $texttt{Mobility of animals}$
- $texttt{Mobility of natural phenomena}$
- $textbf{Trajectory Data Preprocessing}$
- $texttt{Noise Filtering}$
- $textit{Mean Filter}$
- $textit{Kalman and Particle Filters}$
- $textit{Heuristics-Based Outlier Detection}$
- $texttt{Stay Point Detection}$
- $texttt{Trajectory Compression}$:对轨迹数据进行压缩,以减少计算量
- $textit{Distance Metric}$
- $textit{Offline Compression}$
- $textit{Online Data Reduction}$
- $textit{Compression with Semantic Meaning}$
- $texttt{Trajectory Segmentation}$:对轨迹数据进行切割
- $textit{time interval}$
- $textit{shape of a trajectory}$
- $textit{semantic meanings}$
- $texttt{Map Matching}$:对原始的经纬度数据转化为路网数据
- $textit{geometric}$
- $textit{topological}$
- $textit{probabilis 大专栏 VI.应用-Trajectory Data Miningtic}$
- $textit{other advanced techniques}$
- $texttt{Noise Filtering}$
- $textbf{Trajectory Data Management}$
- $texttt{Trajectory Indexing and Retrieval}$:没看懂是为了解决什么问题
- $texttt{Distance/Similarity of Trajectories}$:了解一下度量方式
- $textbf{Uncertainty in Trajectory Data}$
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textit{Modeling Uncertainty of a Trajectory for Queries}$
- $textit{Path Inference from Uncertain Trajectories}$
- $texttt{Privacy of Trajectory Data}$:为保护隐私性,需要增大数据的不确定性。
- $texttt{Reducing Uncertainty from Trajectory Data}$:解决因采样率低,造成数据稀疏,不确定性增大等问题
- $textbf{Trajectory Pattern Mining}$
- $texttt{Moving Together Patterns}$
- $texttt{Trajectory Clustering}$
- $texttt{Mining Sequential Patterns from Trajectories}$
- $texttt{Mining Periodical Patterns from Trajectories
}$
- $textbf{Trajectory Classification}$:做运动状态分类、交通方式分类等分类任务
- $textbf{Anomalies Detection From Trajectories}$
- $texttt{Detecting Outlier Trajectories}$
- $texttt{Identifying Anomalous Events by Trajectories}$
- $textbf{Transfer Trajectory To Other Representations}$
- $texttt{From Trajectory to Graph}$
- $texttt{From Trajectory to Matrix}$
- $texttt{From Trajectory to Tensor}$
VI.应用-Trajectory Data Mining的更多相关文章
- Distributed Databases and Data Mining: Class timetable
Course textbooks Text 1: M. T. Oszu and P. Valduriez, Principles of Distributed Database Systems, 2n ...
- What is the most common software of data mining? (整理中)
What is the most common software of data mining? 1 Orange? 2 Weka? 3 Apache mahout? 4 Rapidminer? 5 ...
- What’s the difference between data mining and data warehousing?
Data mining is the process of finding patterns in a given data set. These patterns can often provide ...
- A web crawler design for data mining
Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...
- Datasets for Data Mining and Data Science
https://github.com/mattbane/RecommenderSystem http://grouplens.org/datasets/movielens/ KDDCUP-2012官网 ...
- cluster analysis in data mining
https://en.wikipedia.org/wiki/K-means_clustering k-means clustering is a method of vector quantizati ...
- Weka 3: Data Mining Software in Java
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
随机推荐
- 创建Maven项目时Maven中的GroupID和ArtifactID的意思
GroupID 是项目组织中唯一的标识符,对应Java包结构,在项目中看到的是main目录里java的目录结构. ArtifactID是项目的唯一的标识符,实际对应项目的名称(就是idea中工程的名字 ...
- ! [remote rejected] master -> master (pre-receive hook declined)
前天准备上传一个project到GitLab上,但是试了很多次都上传不上去,报错如下: ! [remote rejected] master -> master (pre-receive hoo ...
- 3.windows-oracle实战第三课 -表的管理
oracle的核心 多表查询.存储过程.触发器 字符型: char 定义 最大2000字符,例如“char(10) '小韩' 前4个字符放小韩,后添加6个空格补全,查询极快 varchar2(2 ...
- 吴裕雄--天生自然python TensorFlow图片数据处理:No module named 'tensorflow.examples.tutorials'解决办法
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...
- Maven 仓库搜索服务和私服搭建
Maven 仓库搜索服务 使用maven进行日常开发的时候,一个常见问题就是如何寻找需要的依赖,我们可能只知道需要使用类库的项目名称,但是添加maven依赖要求提供确切的maven坐标,这时就可以使用 ...
- dns bind记录
自建DNS服务, 使用的工具是bind, 当然也有其他更轻量的工具 yum -y install bind /etc/named.conf 监听端口和ip修改 默认监听127.0.0.1 其他机器无法 ...
- PAT甲级——1006 Sign In and Sign Out
PATA1006 Sign In and Sign Out At the beginning of every day, the first person who signs in the compu ...
- BGP联盟
---恢复内容开始--- 1. 每台路由器设置loop back口,r1和r6另外多设置两个 2. R2 R3 R4 R5 R6做ospf 以R2为例: ospf 1 router-id 2.2.2. ...
- 认识shell
博主本人平和谦逊,热爱学习,读者阅读过程中发现错误的地方,请帮忙指出,感激不尽 认识shell 一.由来 第一个流行的 shell 是由 Steven Bourne 发展出来的,为了纪念他所以就称为 ...
- selenium元素定位(一)
Selenium提供了8种定位方式. id name class name tag name link text partial link text xpath css selector 这8种定位方 ...