给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离。

两个相邻元素间的距离为 1 。

示例 1:

输入:

0 0 0
0 1 0
0 0 0

输出:

0 0 0
0 1 0
0 0 0

示例 2:

输入:

0 0 0
0 1 0
1 1 1

输出:

0 0 0
0 1 0
1 2 1

注意:

  1. 给定矩阵的元素个数不超过 10000。
  2. 给定矩阵中至少有一个元素是 0。
  3. 矩阵中的元素只在四个方向上相邻: 上、下、左、右。

BFS

我们可以首先遍历一次矩阵,将值为0的点都存入queue,将值为1的点改为INT_MAX。

然后开始BFS遍历,从queue中取出一个数字,遍历其周围四个点,如果越界或者周围点的值小于等于当前值加1,则直接跳过。

因为周围点的距离更小的话,就没有更新的必要,否则将周围点的值更新为当前值加1,然后把周围点的坐标加入queue,参见代码如下:

c++

class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
queue<pair<int, int>> q;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) q.push({i, j});
else matrix[i][j] = INT_MAX;
}
}
while (!q.empty()) {
auto t = q.front(); q.pop();
for (auto dir : dirs) {
int x = t.first + dir[0], y = t.second + dir[1];
if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[t.first][t.second] + 1) continue;
matrix[x][y] = matrix[t.first][t.second] + 1;
q.push({x, y});
}
}
return matrix;
}
};

动态规划

首先建立一个和matrix大小相等的矩阵res,初始化为很大的值,这里我们用INT_MAX-1。

然后我们遍历matrix矩阵,当遇到为0的位置,我们将结果res矩阵的对应位置也设为0。

然后就是这个解法的精髓了,如果不是0的地方,我们在第一次扫描的时候,比较其左边和上边的位置,取其中较小的值,再加上1,来更新结果res中的对应位置。

如果初始化为INT_MAX就会整型溢出,不过放心,由于是取较小值,res[i][j]永远不会取到INT_MAX,所以不会有再加1溢出的风险。

第一次遍历我们比较了左和上的方向,那么我们第二次遍历就要比较右和下的方向,注意两种情况下我们不需要比较,一种是当值为0时,还有一种是当值为1时,这两种情况下值都不可能再变小了,所以没有更新的必要,参见代码如下:

c++

class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> res(m, vector<int>(n, INT_MAX - 1));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) res[i][j] = 0;
else {
if (i > 0) res[i][j] = min(res[i][j], res[i - 1][j] + 1);
if (j > 0) res[i][j] = min(res[i][j], res[i][j - 1] + 1);
}
}
}
for (int i = m - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (res[i][j] != 0 && res[i][j] != 1) {
if (i < m - 1) res[i][j] = min(res[i][j], res[i + 1][j] + 1);
if (j < n - 1) res[i][j] = min(res[i][j], res[i][j + 1] + 1);
}
}
}
return res;
}
};

python

class Solution:
def updateMatrix(self, matrix: List[List[int]]) -> List[List[int]]:
for i in range(len(matrix)):
for j in range(len(matrix[0])):
l,t= 10001,10001
if matrix[i][j] != 0:
if i > 0:
t = matrix[i - 1][j] if j > 0:
l = matrix[i][j - 1] matrix[i][j] = min(l,t) + 1 for i in range(len(matrix) - 1, -1 ,-1):
for j in range(len(matrix[0]) - 1, -1, -1):
r,b = 10001,10001
if matrix[i][j] != 0:
if i < len(matrix) - 1:
b = matrix[i + 1][j] if j < len(matrix[0]) - 1:
r = matrix[i][j + 1] matrix[i][j] = min(matrix[i][j], min(r,b) + 1)
return matrix

LeetCode——542. 01 矩阵的更多相关文章

  1. Java实现 LeetCode 542 01 矩阵(暴力大法,正反便利)

    542. 01 矩阵 给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离. 两个相邻元素间的距离为 1 . 示例 1: 输入: 0 0 0 0 1 0 0 0 0 输出: 0 0 0 ...

  2. Leetcode 542.01矩阵

    01矩阵 给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离. 两个相邻元素间的距离为 1 . 示例 1: 输入: 0 0 0 0 1 0 0 0 0 输出: 0 0 0 0 1 0 ...

  3. leetcode 542. 01 Matrix 、663. Walls and Gates(lintcode) 、773. Sliding Puzzle 、803. Shortest Distance from All Buildings

    542. 01 Matrix https://www.cnblogs.com/grandyang/p/6602288.html 将所有的1置为INT_MAX,然后用所有的0去更新原本位置为1的值. 最 ...

  4. 【leet-code】542. 01 矩阵

    题目描述 给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离. 两个相邻元素间的距离为 1 . 示例 1: 输入: 0 0 0 0 1 0 0 0 0 输出: 0 0 0 0 1 0 ...

  5. [leetcode] 542. 01 Matrix (Medium)

    给予一个矩阵,矩阵有1有0,计算每一个1到0需要走几步,只能走上下左右. 解法一: 利用dp,从左上角遍历一遍,再从右下角遍历一遍,dp存储当前位置到0的最短距离. 十分粗心的搞错了col和row,改 ...

  6. LeetCode 542. 01 Matrix

    输入:只包含0,1的矩阵 输出:元素1到达最近0的距离 算法思想:广度优先搜索. 元素为0为可达区域,元素为1为不可达区域,我们的目标是为了从可达区域不断地扩展至不可达区域,在扩展的过程中,也就计算出 ...

  7. Leetcode 542:01 矩阵 01

    Leetcode 542:01 矩阵 01 Matrix### 题目: 给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离. 两个相邻元素间的距离为 1 . Given a matr ...

  8. [EOJ Monthly 2018.10][C. 痛苦的 01 矩阵]

    题目链接:C. 痛苦的 01 矩阵 题目大意:原题说的很清楚了,不需要简化_(:з」∠)_ 题解:设\(r_i\)为第\(i\)行中0的个数,\(c_j\)为第\(j\)列中0的个数,\(f_{i,j ...

  9. LeetCode:螺旋矩阵||【59】

    LeetCode:螺旋矩阵||[59] 题目描述 给定一个正整数 n,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵. 示例: 输入: 3 输出: [ [ 1, 2, 3 ...

随机推荐

  1. 【LeetCode】最长回文子串-动态规划法

    [问题]给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 : 输入: "babad" 输出: "bab" 注意: ...

  2. 在Mac上使用docker+sql server+Navicat

    1. 版本:  2. 安装Kubernetes(并不知道安装这个有什么用) git clone https://github.com/maguowei/k8s-docker-desktop-for-m ...

  3. SpringCloud学习之Sleuth服务链路跟踪(十二)

    一.为什么需要Spring Cloud Sleuth 微服务架构是一个分布式架构,它按业务划分服务单元,一个分布式系统往往有很多个服务单元.由于服务单元数量众多,业务的复杂性,如果出现了错误和异常,很 ...

  4. js实现ctrl+v粘贴上传图片(兼容chrome,firefox,ie11)

    背景 我们或多或少都使用过各式各样的富文本编辑器,其中有一个很方便功能,复制一张图片然后粘贴进文本框,这张图片就被上传了,那么这个方便的功能是如何实现的呢? 原理分析 提取操作:复制=>粘贴=& ...

  5. Ganglia 安装 No package 'ck' found

    安装ConcurrecyKit,下载地址:https://github.com/concurrencykit/ck   编译安装即可 下面是一个歪果仁的解决办法,不过我没用上 I was buildi ...

  6. OFD系列软件说明(免费试用、QQ交流群:877371250)

    前言 OFD是一个版式文档格式.所谓版式文档格式是版面呈现效果固定的电子文档格式. 我们今天接触到最多的版式文档就是国际通用的PDF. 国内的就是由工业和信息化部软件司牵头中国电子技术标准化研究院成立 ...

  7. php base64编码图片上传七牛

    上网上找了好几个例子 都是自己写curl上传 感觉七牛这么多年了不应该sdk不提供一个方法 然后试 试 试 显示put 方式 上传上去 就是个字符串 后来换成文件上传方法 putFile 成了 不废话 ...

  8. 深入浅出Python装饰器

    1.前言 装饰器是Python的特有的语法,刚接触装饰器的同学可能会觉得装饰器很难理解,装饰器的功能也可以不用装饰器实现,但是装饰器无疑是提高你Python代码质量的利器(尤其是使用在一些具有重复功能 ...

  9. PHP 的变量类型,变量检测

    1.PHP的变量类型: 整型       浮点型 字符串 布尔型 数组 对象 null 资源类型 一个变量就是一个盒子,类型可以看做盒子的标签,变量的值就是盒子里的内容 null 是没有类型的空盒子, ...

  10. CNN:卷积输出分辨率计算

    卷积是CNN非常核心的操作,CNN主要就是通过卷积来实现特征提取的,在卷积操作的计算中会设计到几个概念:步长(strides).补充(padding).卷积核(kernel)等,那卷积的输出分辨率计算 ...