tensorflow实现卷积层的几种方式
#coding:utf-8 #第一种实现 tf.nn
import tensorflow as tf
import tensorflow.contrib.slim as slim tf.reset_default_graph()
image = tf.random_normal([1, 112, 96, 3])
in_channels = 3
out_channels = 32
kernel_size = 5 conv_weight = tf.Variable(tf.truncated_normal([kernel_size,kernel_size,in_channels,out_channels],
stddev=0.1, dtype=tf.float32)) bias = tf.Variable(tf.zeros([out_channels], dtype=tf.float32))
conv = tf.nn.conv2d(image, conv_weight, strides=[1, 2, 2, 1], padding='SAME')
conv = tf.nn.bias_add(conv,bias)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
convres = sess.run(conv)
print convres
print (conv.get_shape()) #第二种实现 tf.layers
truncated_norm_init = tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32)
zero_init = tf.zeros_initializer(dtype=tf.float32)
l2_regularizer = tf.contrib.layers.l2_regularizer(1.0)
conv = tf.layers.conv2d(image, out_channels, [kernel_size, kernel_size], strides=[2, 2], padding='SAME',
kernel_initializer=truncated_norm_init, bias_initializer=zero_init,
kernel_regularizer=l2_regularizer, bias_regularizer=l2_regularizer) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
convres = sess.run(conv)
print convres
print (conv.get_shape()) #第三种实现 slim
conv = slim.conv2d(image, out_channels, [kernel_size, kernel_size], scope='conv1_1')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
convres = sess.run(conv)
print convres
print (conv.get_shape())
tensorflow实现卷积层的几种方式的更多相关文章
- MyBatis开发Dao层的两种方式(原始Dao层开发)
本文将介绍使用框架mybatis开发原始Dao层来对一个对数据库进行增删改查的案例. Mapper动态代理开发Dao层请阅读我的下一篇博客:MyBatis开发Dao层的两种方式(Mapper动态代理方 ...
- MyBatis开发Dao层的两种方式(Mapper动态代理方式)
MyBatis开发原始Dao层请阅读我的上一篇博客:MyBatis开发Dao层的两种方式(原始Dao层开发) 接上一篇博客继续介绍MyBatis开发Dao层的第二种方式:Mapper动态代理方式 Ma ...
- 『TensorFlow』卷积层、池化层详解
一.前向计算和反向传播数学过程讲解
- TensorFlow的 卷积层
用 TensorFlow 做卷积 让我们用所学知识在 TensorFlow 里构建真的 CNNs.在下面的练习中,你需要设定卷积核滤波器(filters)的维度,weight,bias.这在很大程度上 ...
- CNN中卷积层的计算细节
原文链接: https://zhuanlan.zhihu.com/p/29119239 卷积层尺寸的计算原理 输入矩阵格式:四个维度,依次为:样本数.图像高度.图像宽度.图像通道数 输出矩阵格式:与输 ...
- TensorFlow实现卷积神经网络
1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连 ...
- 82、TensorFlow教你如何构造卷积层
''' Created on 2017年4月22日 @author: weizhen ''' import tensorflow as tf #通过tf.get_variable的方式创建过滤器的权重 ...
- tensorflow 1.0 学习:卷积层
在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化. 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d conv2d( input, filter, strides, ...
- TensorFlow与caffe中卷积层feature map大小计算
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同 ...
随机推荐
- BlackArch Linux 2019.06.01 宣布发布
导读 BlackArch Linux是一个基于Arch Linux的发行版,专为渗透测试人员和安全研究人员设计,并包含大量渗透测试和安全实用程序,已宣布发布2019.06.01版本. BlackArc ...
- C3P0模板
1.创建c3p0-config.xml配置文件放在src下 <?xml version="1.0" encoding="UTF-8"?> <c ...
- 【分类问题中模型的性能度量(一)】错误率、精度、查准率、查全率、F1详细讲解
文章目录 1.错误率与精度 2.查准率.查全率与F1 2.1 查准率.查全率 2.2 P-R曲线(P.R到F1的思维过渡) 2.3 F1度量 2.4 扩展 性能度量是用来衡量模型泛化能力的评价标准,错 ...
- Elasticsearch分布式搜索
ElasticSearch之介绍 一 Elasticsearch产生背景 1.1 大规模数据如何检索 如:当系统数据量上了10亿.100亿条的时候,我们在做系统架构的时候通常会从以下角度去考虑问题:1 ...
- Idea 中的快捷键(mac)
Mac键盘符号和修饰键说明 ⌘ Command ⇧ Shift ⌥ Option ⌃ Control ↩︎ Return/Enter ⌫ Delete ⌦ 向前删除键(Fn+Delete) ↑ 上箭头 ...
- C++保存数据到CSV文件
主要是今天工作的时候需要把一些数据保存到本地,因为是一些预测值和标签的对比,还有预测值的概率,所以想到用CSV文件来保存,大概查了一下,还是比较简单的,所以记录一下. 首先要说明的是CSV文件有点类似 ...
- 瑞士军刀DLib的VS2015编译
Dlib的官方解释是: Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creati ...
- import torch 报错
1.进入官网 https://pytorch.org/ 2.复制command到anaconda环境,即可
- 1)warning LNK4233
名称 test.exe 包含非 ASCII 字符,在具有除 936 以外的 ANSI 代码页的系统上可能不能加载 DLL 名称 练习动态库.dll 包含非 ASCII 字符,如果系统没有与用于链接此 ...
- Microsoft SQL Server Management Studio连接后报“ viewInfo (Microsoft.SqlServer.Management.SqlStudio.Expl”
解决办法: 在路径:C:\Users\你的用户名\AppData\Local\Temp\”新建文件夹并命名为2,如果已经有 2 则看清楚是否是文件而不是文件夹,删掉文件改为文件夹: 如果是找不到\Us ...