题目描述

  $ZYB$获得了一个神秘的非空字符串$p$。
  初始时,串$S$是空的。
  $ZYB$会执行若干次这样的操作:
  $1.$选取$S$中的一个任意的位置(可以是最前面或者最后面)
  $2.$在这个位置上插入一个完整的$p$,得到一个新的$S$。
  但是$ZYB$不小心把$p$弄丢了。
  他告诉你现在的$S$是什么,请帮他还原出可能的$p$。
  如果有多个$p$符合要求,选取长度最短的。
  如果仍然有多解,选取字典序最小的。


输入格式

  从文件$string.in$中读入数据。
  这道题有多组数据,第一行一个数$T$,表示数据组数。
  对于每组数据,读入一行字符串,表示$S$。


输出格式

  输出到文件$string.out$中。
  一共$T$行,每行一个字符串$p$,表示对应的答案。


样例

样例输入:

1
hhehellolloelhellolo

样例输出:

hello


数据范围与提示

样例解释:

  $S$为:
  $1.$
  $2.hello$
  $3.hhelloello$
  $4.hhelloelhellolo$
  $5.hhehellolloelhellolo$

数据范围:

  前$20\%$:$|S|\leqslant 8$
  前$40\%$:$|S|\leqslant 20$
  前$60\%$:$|S|\leqslant 100,\sum|S|\leqslant 300$
  另有$10\%$:$S$是$p$等概率插入可行位置构造出来的。
  另有$10\%$:$p$的长度不超过$3$。
  $100\%$:$|S|\leqslant 200,T\leqslant 10,\sum|S|\leqslant 666$


题解

因为串$S$肯定有一段连续的是$p$(最后插进去的),所以可以枚举这个连续的串,再想办法判断就好了。

考虑$DP$,定义怪怪的,设$dp[l][r]$表示在当前枚举的长度为$len$的情况下,区间$[l,r]$除了前$(r-l)%len$位匹配了整串前缀以外剩下的部分都匹配了是否可行。

那么考虑转移,设$b$数组为当前$check$的这段区间:

  $\alpha.dp[l][r]|=dp[l][r-1]\&(s[j]==b[(j-i)%len+1])$:多匹配了一位。

  $\beta.dp[l][r]|=dp[i][j-k\times len]\&f[j-k\times len+1][j]$:后面有几段匹配了。

由于$\beta$转移的上界为$\frac{N}{len}$,所以最终的时间复杂度为$\Theta(\sum\limits_{len|N}(N-len+1)\times N^2\times\frac{N}{len}=\Theta(N^4)$。

不过可以对于每一个$p$,先判断一下其子集合法性,然后使用记忆化搜索即可。

时间复杂度:$\Theta(N^4)$(但是远远达不到)。

期望得分:$100$分。

实际的分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
char ch[201];
int n,a[201],b[201],ans[201];
int dp[201][201];
int mod(int x,int y){return x>y?mod(x-y,y):x;}
bool dfs(int x,int l,int r)
{
if(l>r)return 1;
if(dp[l][r]!=-1)return dp[l][r];
for(int mid=r-x;l<=mid;mid-=x)
if(dfs(x,l,mid)&&dfs(x,mid+1,r))
return dp[l][r]=1;
if(a[r]==b[mod(r-l+1,x)])return dp[l][r]=dfs(x,l,r-1);
return dp[l][r]=0;
}
bool judge(int x){for(int i=1;i<=x;i++)if(ans[i]>b[i])return 1;return 0;}
int main()
{
int T;scanf("%d",&T);
while(T--)
{
scanf("%s",ch+1);
n=strlen(ch+1);
for(int i=1;i<=n;i++)a[i]=ch[i]-'a'+1;
for(int i=1;i<=n;i++)
{
if(n%i)continue;bool res=0;
memset(ans,0,sizeof(ans));
for(int j=1;j<=n-i+1;j++)
{
memset(dp,-1,sizeof(dp));
for(int k=1;k<=i;k++)b[k]=a[j+k-1];
if(dfs(i,1,n)&&(!ans[1]||judge(i)))
for(int k=1;k<=i;k++)ans[k]=b[k];
}
if(ans[1]){for(int k=1;k<=i;k++)printf("%c",(char)(ans[k]+'a'-1));puts("");break;}
}
}
return 0;
}

rp++

[JZOJ6347]:ZYB玩字符串(DP+记忆化搜索)的更多相关文章

  1. 状压DP+记忆化搜索 UVA 1252 Twenty Questions

    题目传送门 /* 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 若 ...

  2. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...

  3. 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索

    题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...

  4. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  5. [题解](树形dp/记忆化搜索)luogu_P1040_加分二叉树

    树形dp/记忆化搜索 首先可以看出树形dp,因为第一个问题并不需要知道子树的样子, 然而第二个输出前序遍历,必须知道每个子树的根节点,需要在树形dp过程中记录,递归输出 那么如何求最大加分树——根据中 ...

  6. poj1664 dp记忆化搜索

    http://poj.org/problem?id=1664 Description 把M个相同的苹果放在N个相同的盘子里,同意有的盘子空着不放,问共同拥有多少种不同的分法?(用K表示)5.1.1和1 ...

  7. POJ 1088 DP=记忆化搜索

    话说DP=记忆化搜索这句话真不是虚的. 面对这道题目,题意很简单,但是DP的时候,方向分为四个,这个时候用递推就好难写了,你很难得到当前状态的前一个真实状态,这个时候记忆化搜索就派上用场啦! 通过对四 ...

  8. loj 1044(dp+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26764 思路:dp[pos]表示0-pos这段字符串最少分割的回文 ...

  9. SDUT 2893-B(DP || 记忆化搜索)

    B Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 有n块地板排成一条直线,从左到右编号为1,2,3. . . n-1,n,每 ...

随机推荐

  1. C++遍历文件夹

    struct _finddata_t { unsigned attrib; //文件属性 time_t time_create; //文件创建时间 time_t time_access; //文件上一 ...

  2. git 报错fatal: not a git repository (or any of the parent directories): .git

    产生原因:一般是没有初始化git本地版本管理仓库,所以无法执行git命令 解决方法:操作之前执行以下命令行:  git init 初始化git,即可解决:

  3. 使用nodejs创建Marketing Cloud的contact数据

    源代码如下: var config = require("./mcConfig"); var request = require('request'); var url = con ...

  4. debian设置limits.conf

    最近已经把自己的游戏框架主要功能完成得差不多了,决定将自己的开发环境从debian7升级到debian9,不然太多第三方依赖都跟不上了.debian10刚出来,MongoDB还没适配,所以暂不考虑. ...

  5. JavaSpring【五、AOP基础】

    概念: AOP--面向切面编程,通过预编译/动态代理实现程序功能的统一维护 主要功能是:日志.性能统计.安全控制.事务处理.异常处理 实现方式 预编译--AspectJ 动态代理--SpringAOP ...

  6. QT学习之路DAY1之初学QT的小项目

    以下所有代码均利用软件QT5编写 项目一:Hello world! 利用QTcreator创建项目 修改main.cpp代码为 #include "mainwindow.h" #i ...

  7. Django框架起步

    一.环境安装 二.创建项目 三.项目目录 四.创建项目应用 五.应用目录 六.第一个响应 七.第一个模板页面 八.第一个重定向 九.url应用移植 十.多应用相同模板页面冲突 十一.静态资源的配置 十 ...

  8. 04_Redis_Hash命令

    一:Redis 哈希(Hash) 1.1:Redis hash 是一个string类型的field和value的映射表,hash特别适合用于存储对象. 1.2:Redis 中每个 hash 可以存储 ...

  9. centos能进入命令行界面,进不了图形界面

    在开机引导界面按“e”, 找到linux16开头的一行,定位到ro然后修改ro为rw,并添加:init=/sysroot/bin/sh 使用ctrl x进入安全模式. 使用命令:chroot /sys ...

  10. 面试题——常见的gc算法有哪些?

    常见的gc算法有哪些? java garbage collection是一个自动进程,用于管理程序使用的运行时内存.通过自动执行JVM,可以减轻程序中分配和释放内存资源的开销. 垃圾回收机制是由垃圾回 ...