知识点

"""
xgboost:是一种提升算法,串行的决策树
过程:
第一棵树:目标值:1000 ,预测值:950
第二颗树:目标值:1000-950=50(残差作为输入) 预测值:30
第三颗树:目标值:50-30=20(残差作为输入) 预测值:18
最终的目标值:三棵树的预测值相加,即950+30+18 xgboost算法开发过程:
1、数据预处理和数据清洗
2、数据归一化或标准化
3、构建xgboost所需的矩阵,dtrain = xgb.DMatrix(train_x,train_y)
4、xgboost的参数字典设置xgb_params
5、自定义衡量标准,使用平均绝对误差
def xg_eval_mean(yhat,dtrain):
y = dtrain.get_label()
return 'mean',mean_absolute_error(np.exp(y),np.exp(yhat))
5、交叉验证 bst_cv1 = xgb.cv(xgb_params,dtrain,num_boost_round=100,feval=xg_eval_mean....) num_boost_round=100表示100棵树
6、打印值:print("CV score:",bst_cv1.iloc[-1,:]["test-mae-mean"])
7、调参:
1、选择一组初始参数
2、改变max_depth和min_child_weight (可用网格搜索调优)
3、调节gamma降低模型拟合风险
4、调节subsample和colsample_bytree改变数据采用策略
5、调节学习率eta """

1、安装

a)下载安装包:https://www.lfd.uci.edu/~gohlke/pythonlibs/
b) pip install xgboost.****.whl
c)import xgboost ,如果没有报错,说明安装成功

机器学习之Xgboost算法的更多相关文章

  1. 机器学习 之XGBoost算法

    目录 1.基本知识点简介 2.XGBoost提升树算法 2.1 XGBoost原理 2.2 XGBoost中损失函数的泰勒展开 2.3 XGBoost中正则化项的选定 2.4 最终的目标损失函数及其最 ...

  2. 机器学习总结(一) Adaboost,GBDT和XGboost算法

    一: 提升方法概述 提升方法是一种常用的统计学习方法,其实就是将多个弱学习器提升(boost)为一个强学习器的算法.其工作机制是通过一个弱学习算法,从初始训练集中训练出一个弱学习器,再根据弱学习器的表 ...

  3. Python机器学习笔记:XgBoost算法

    前言 1,Xgboost简介 Xgboost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器.因为Xgboost是一种提升树模型,所以它是将许多 ...

  4. 机器学习之——集成算法,随机森林,Bootsing,Adaboost,Staking,GBDT,XGboost

    集成学习 集成算法 随机森林(前身是bagging或者随机抽样)(并行算法) 提升算法(Boosting算法) GBDT(迭代决策树) (串行算法) Adaboost (串行算法) Stacking ...

  5. XGBoost算法--学习笔记

    学习背景 最近想要学习和实现一下XGBoost算法,原因是最近对项目有些想法,准备做个回归预测.作为当下比较火的回归预测算法,准备直接套用试试效果. 一.基础知识 (1)泰勒公式 泰勒公式是一个用函数 ...

  6. 转载:XGBOOST算法梳理

    学习内容: CART树 算法原理 损失函数 分裂结点算法 正则化 对缺失值处理 优缺点 应用场景 sklearn参数 转自:https://zhuanlan.zhihu.com/p/58221959 ...

  7. XGBoost算法

    一.基础知识 (1)泰勒公式 泰勒公式是一个用函数在某点的信息描述其附近取值的公式.具有局部有效性. 基本形式如下: 由以上的基本形式可知泰勒公式的迭代形式为: 以上这个迭代形式是针对二阶泰勒展开,你 ...

  8. 04-09 XgBoost算法

    目录 XgBoost算法 一.XgBoost算法学习目标 二.XgBoost算法详解 2.1 XgBoost算法参数 2.2 XgBoost算法目标函数 2.3 XgBoost算法正则化项 2.4 X ...

  9. python平台下实现xgboost算法及输出的解释

    python平台下实现xgboost算法及输出的解释 1. 问题描述 ​ 近来, 在python环境下使用xgboost算法作若干的机器学习任务, 在这个过程中也使用了其内置的函数来可视化树的结果, ...

随机推荐

  1. Python入门之第三方模块安装

    Python入门之第三方模块安装 平台:Win10 x64 + Anaconda3-5.3.0 (+Python3.7.0) Issue说明:pip install line_profiler-2.1 ...

  2. Django—logging配置

    我写Django项目常用的logging配置. # Django的日志配置项 BASE_LOG_DIR = os.path.join(BASE_DIR, "log") LOGGIN ...

  3. P2057 善意的投票 最小割理解

    实现时这样建图:直接将S连向同意的人,T连向不同意的人,若两人是朋友,则在他们之间连一条双向边 #include<bits/stdc++.h> #define il inline usin ...

  4. jQuery超酷响应式瀑布流效果

    参考 http://www.sucaihuo.com/js/74.html <script src="scripts/blocksit.min.js"></scr ...

  5. bat 提示窗口,带换行

    bat 提示窗口 各种窗口样式 mshta vbscript:msgbox("内容1",1,"标题1")(window.close) mshta vbscrip ...

  6. R语言简单介绍

    R语言 概述 R语言是用于统计分析,图形表示和报告的编程语言和软件环境. R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发. R语言的 ...

  7. git命令行提交流程

    一.顺利提交无冲突情况(diff->add->fetch->pull->commit->push) 1.git  status 查看状态 2. git diff head ...

  8. 【bzoj3083】遥远的国度(树链剖分+线段树)

    题目描述 zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要zcwwzdjn完成 ...

  9. vue-cli使用less

    vue-cli中使用less package.json 中添加 less,less-loader 之后不需要进行其他配置 在vue-cli构建的项目中 utils.js 已经帮我们引入了各种css编辑 ...

  10. SP4546 ANARC08A - Tobo or not Tobo IDA*

    题意: