HDU 6187 Destroy Walls (思维,最大生成树)
HDU 6187 Destroy Walls (思维,最大生成树)
Destroy Walls
*Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)
Total Submission(s): 1784 Accepted Submission(s): 692
*
Problem Description
Long times ago, there are beautiful historic walls in the city. These walls divide the city into many parts of area.
Since it was not convenient, the new king wants to destroy some of these walls, so he can arrive anywhere from his castle. We assume that his castle locates at (0.6∗2√,0.6∗3√).
There are n towers in the city, which numbered from 1 to n. The ith's location is (xi,yi). Also, there are m walls connecting the towers. Specifically, the ith wall connects the tower ui and the tower vi(including the endpoint). The cost of destroying the ith wall is wi.
Now the king asks you to help him to divide the city. Firstly, the king wants to destroy as less walls as possible, and in addition, he wants to make the cost least.
The walls only intersect at the endpoint. It is guaranteed that no walls connects the same tower and no 2 walls connects the same pair of towers. Thait is to say, the given graph formed by the walls and towers doesn't contain any multiple edges or self-loops.
Initially, you should tell the king how many walls he should destroy at least to achieve his goal, and the minimal cost under this condition.
Input
There are several test cases.
For each test case:
The first line contains 2 integer n, m.
Then next n lines describe the coordinates of the points.
Each line contains 2 integers xi,yi.
Then m lines follow, the ith line contains 3 integers ui,vi,wi
|xi|,|yi|≤105
3≤n≤100000,1≤m≤200000
1≤ui,vi≤n,ui≠vi,0≤wi≤10000
Output
For each test case outout one line with 2 integers sperate by a space, indicate how many walls the king should destroy at least to achieve his goal, and the minimal cost under this condition.
Sample Input
4 4
-1 -1
-1 1
1 1
1 -1
1 2 1
2 3 2
3 4 1
4 1 2
Sample Output
1 1
Source
题意:
什么坐标什么的都是胡人的,题意有点迷。
给定一个含有n个点,m个边的无向图。
问最少删除多少个边,同时删除的边的边权sum和尽可能少,使其满足剩下的图仍然联通。
思路:
在该DAG上跑一个最大生成树,并记录生成树的边数cnt和权值sum和cost。
同时记sum为DAG的每一个边的sum和。
那么 m-cnt 和 sum- cost 就是答案1和答案2.
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
struct node {
int f, t, w;
node(int ff, int tt, int ww)
{
f = ff;
t = tt;
w = ww;
}
bool operator < (const node &b) const
{
return w > b.w;
}
};
std::vector<node> v;
int x, y;
int n, m;
int ans1 = 0;
ll cost = 0ll;
ll sum = 0ll;
int fa[maxn];
void init()
{
repd(i, 1, n) {
fa[i] = i;
}
}
int findpar(int x)
{
return x == fa[x] ? x : fa[x] = findpar(fa[x]);
}
void mg(int x, int y)
{
x = findpar(x);
y = findpar(y);
fa[x] = y;
}
void solve()
{
init();
sort(ALL(v));
for (auto temp : v) {
x = temp.f;
y = temp.t;
x = findpar(x);
y = findpar(y);
if (x != y) {
mg(x, y);
cost += temp.w;
ans1++;
}
}
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
while (cin >> n >> m) {
ans1 = 0ll;
sum = 0ll;
cost = 0ll;
v.clear();
repd(i, 1, n) {
cin >> x >> y;
}
int z;
repd(i, 1, m) {
cin >> x >> y >> z;
sum += z;
v.push_back(node(x, y, z));
}
solve();
cout << m - ans1 << " " << sum - cost << endl;
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
HDU 6187 Destroy Walls (思维,最大生成树)的更多相关文章
- HDU 6187 Destroy Walls
Destroy Walls Long times ago, there are beautiful historic walls in the city. These walls divide the ...
- HDU 6187 Destroy Walls (对偶图最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6187 题意:有一个V个结点M条边的带边权无向平面图,有一个人在一个区域,要拆一些墙使得他可以到达任意一 ...
- HDU - 6187 (最大生成树) 最小生成树
Destroy Walls Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) ...
- hdu 3367(Pseudoforest ) (最大生成树)
Pseudoforest Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tot ...
- hdu 4940 Destroy Transportation system(水过)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4940 Destroy Transportation system Time Limit: 2000/1 ...
- HDU 1692 Destroy the Well of Life 水题
Destroy the Well of Life Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showprob ...
- hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- HDU 6651 Final Exam (思维)
2019 杭电多校 7 1006 题目链接:HDU 6651 比赛链接:2019 Multi-University Training Contest 7 Problem Description Fin ...
- HDU 4940 Destroy Transportation system(无源汇有上下界最大流)
看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...
随机推荐
- linux 使用jar 打包成war
把当前目录下的所有文件打包成game.war jar -cvfM0 game.war ./ -c 创建war包 -v 显示过程信息 -f -M -0 这个是阿拉伯数字,只打包不压缩 ...
- PHP 菠菜木马代码
<?php error_reporting(E_ERROR);@ini_set('display_errors', 'Off');@ini_set('max_execution_time', 2 ...
- 按键板的原理与实现----ADC
在嵌入式系统产品开发中,按键板的设计是最基本的,也是项目评估阶段必须要考虑的问题.其实现方式又很多种,具体使用那一种就需要结合特定IC的可用IO数量,并综合考虑成本,做出最终选择.本系列文章将介绍多种 ...
- Java面试 - 复制引用和复制对象的区别?
复制引用:把原对象的地址赋给了一个新的引用变量,只要其中一个对象的属性发生变化,另一个对象的属性也随之发生变化. 复制对象:把原对象的内容赋给了一个新的对象,其中一个对象的属性发生变化,并不影响另一个 ...
- LeetCode 1022. 从根到叶的二进制数之和(Sum of Root To Leaf Binary Numbers)
1022. 从根到叶的二进制数之和 1022. Sum of Root To Leaf Binary Numbers 题目描述 Given a binary tree, each node has v ...
- 多生产者多消费者(第一种方式),基于synchronized,wait,notifyAll
生产者消费者模式描述的是协调与协作关系.比如一个人正在准备食物(生产者),而另一个人正在吃(消费者),他们使用一个共用 的桌子用于放置盘子和取走盘子,生产者准备食物,如果桌子上已经满了就等待,消费者( ...
- 038 Android Magicindicator开源框架实现viewpager底部圆形指示器
1.Magicindicator介绍 Magicindicator是一个强大.可定制.易扩展的 ViewPager 指示器框架.是ViewPagerIndicator.TabLayout.PagerS ...
- dotnet Core学习之旅(三):创建项目
[重要:文中所有外链不能确保永久有效]>创建解决方案 在VSCode上,可以使用来自开源力量的vscode扩展vscode-solution-explorer来增强VSCode对.NET项目的支 ...
- centos7安装oracle11g(根据oracle官方文档安装,解决图形界面安装问题)
一.系统及安装包 操作系统:centos 7.4 oracle版本:oracle 11g r2 二.centos环境配置 安装数据库所需要的软件包 [root@localhost data]# yum ...
- Mongodb命令行导入导出数据
第一步,找到mongodb安装目录第二步,从命令行进入mongodb安装目录下的bin目录第三步(1),导出数据命令(导出的文件有两种格式:json/csv,此处导出的是json文件,对于导出CSV文 ...