开始一直T,原来是没有srand…

CODE

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
vector<LL>arr;
inline LL multi(LL a, LL b, LL p) {
LL re = a * b - (LL)((long double) a / p * b + 1e-8) * p;
return re < 0 ? re + p : re;
}
LL gcd(LL a, LL b) { return b ? gcd(b, a%b) : a; }
inline LL qpow(LL a, LL b, LL p) {
LL re = 1;
while(b) {
if(b&1) re = multi(re, a, p);
a = multi(a, a, p); b >>= 1;
}
return re;
}
inline LL Pollard_Rho(LL n, int sed) {
LL i = 1, k = 2, x = rand()%(n-1)+1, y = x;
while(true) {
x = (multi(x, x, n) + sed) % n;
LL p = gcd(n, (y-x+n)%n);
if(p != 1 && p != n) return p;
if(y == x) return n;
if(++i == k) y = x, k <<= 1;
}
}
LL x[100];
inline bool MR(LL n) {
if(n == 2) return 1;
int s = 20, t = 0; LL u = n-1;
while(!(u&1)) ++t, u>>=1;
while(s--) {
LL a = rand()%(n-2) + 2;
x[0] = qpow(a, u, n);
for(int i = 1; i <= t; ++i) {
x[i] = multi(x[i-1], x[i-1], n);
if(x[i] == 1 && x[i-1] != 1 && x[i-1] != n-1) return 0;
}
if(x[t] != 1) return 0;
}
return 1;
}
void find(LL n, int sed) {
if(n == 1) return;
if(MR(n)) { arr.push_back(n); return; }
LL p = n; int k = sed;
while(p == n) p = Pollard_Rho(p, sed--);
find(p, k);
find(n/p, k);
}
LL N;
int main()
{
srand(19260817);
scanf("%lld", &N);
find(N, 107);
sort(arr.begin(), arr.end());
int siz = unique(arr.begin(), arr.end()) - arr.begin();
LL ans = N;
while(siz--)
ans /= arr[siz] , ans *= arr[siz]-1;
printf("%lld\n", ans);
}

BZOJ 4802: 欧拉函数 (Pollard-Rho)的更多相关文章

  1. BZOJ 4802 欧拉函数

    4802: 欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Outp ...

  2. BZOJ 4802 欧拉函数(Pollard_Rho)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4802 [题目大意] 已知N,求phi(N),N<=10^18 [题解] 我们用P ...

  3. [BZOJ]4805: 欧拉函数求和

    解题思路类似莫比乌斯函数之和 题目大意:求[1,n]内的欧拉函数$\varphi$之和.($n<=2*10^{9}$) 思路:令$ M(n)=\sum_{i=1}^{n}\varphi (i)  ...

  4. [bzoj 2818]欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 枚举最大公约数,对于每一个质数p,只需要求出1<=x,y<=(n/p)范 ...

  5. BZOJ 2190 欧拉函数

    思路: 递推出来欧拉函数 搞个前缀和 sum[n-1]*2+3就是答案 假设仪仗队是从零开始的 视线能看见的地方就是gcd(x,y)=1的地方 倒过来一样 刨掉(1,1) 就是ans*2+1 再加一下 ...

  6. BZOJ 4805: 欧拉函数求和 杜教筛

    https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...

  7. 【刷题】BZOJ 4805 欧拉函数求和

    Description 给出一个数字N,求sigma(phi(i)),1<=i<=N Input 正整数N.N<=2*10^9 Output 输出答案. Sample Input 1 ...

  8. 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式

    找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...

  9. BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数

    BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sa ...

随机推荐

  1. [Agc028B]Removing Blocks_排列组合

    Removing Blocks 题目链接:https://atcoder.jp/contests/agc028/tasks/agc028_b 数据范围:略. 题解: 这种问题的第一步很套路,就是对于每 ...

  2. centos6.5安装python3及virtualenv环境

    1. 下载源码: wget https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz wget http://mirrors.sohu.com/ ...

  3. SQL SERVER创建表

    创建表 create table table_name ( column_name_1 data_type, column_name_2 data_type NOT NULL, column_name ...

  4. 实时监控服务器某个端口状态TCPing

    在给客户做运维服务期间,发现了一个奇怪的现象:备份系统(第三方国产)告警日志显示,每天晚上备份服务器的客户端在3点左右离线然后上线,再离线再上线,每晚两次,很是诡异. 联系了厂家技术支持,前后花了两天 ...

  5. IDEA插件之FindBugs

    1.是个啥? Findbugs,它是一个静态分析工具,用来查找Java代码中的程序错误.它使用静态分析来识别Java程序中上百种不同类型的潜在错误. 2.安装 File -> Settings ...

  6. 搜索(BFS、DFS、回溯)

    这类题是最简单的了都是一个套路,不像动态规划一类题一个套路,没做过就是不会也极难想出来. 一.BFS 解决的问题:用来初始点解决到指定点的最短路径问题,因为图的每一层上的点到初始点的距离相同.(注意是 ...

  7. Codeforces Round #590 (Div. 3) Editorial

    Codeforces Round #590 (Div. 3) Editorial 题目链接 官方题解 不要因为走得太远,就忘记为什么出发! Problem A 题目大意:商店有n件商品,每件商品有不同 ...

  8. Python学习3——列表和元组

    一.通用序列操作——索引.切片.相加.相乘.成员资格检查 1.索引,正序从0开始为第一个元素,逆序从-1开始,-1为最后一个元素 >>> greeting[0] 'h' >&g ...

  9. MySQL 并发事务问题以及事务的隔离级别

    一.并发事务处理带来的问题 相对于串行处理,并发事务(InnoDB)处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多用户. 但并发事务处理也会带来一些问题,主要有一下几种 ...

  10. Spring与Web框架(例如Spring MVC)漫谈——关于Spring对于多个Web框架的支持

    在看Spring MVC的官方文档时,最后一章是关于Spring对于其它Web框架的支持(如JSF,Apache Struts 2.x,Tapestry 5.x),当然Spring自己的MVC框架Sp ...