BZOJ 4802: 欧拉函数 (Pollard-Rho)
开始一直T,原来是没有srand…
CODE
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
vector<LL>arr;
inline LL multi(LL a, LL b, LL p) {
LL re = a * b - (LL)((long double) a / p * b + 1e-8) * p;
return re < 0 ? re + p : re;
}
LL gcd(LL a, LL b) { return b ? gcd(b, a%b) : a; }
inline LL qpow(LL a, LL b, LL p) {
LL re = 1;
while(b) {
if(b&1) re = multi(re, a, p);
a = multi(a, a, p); b >>= 1;
}
return re;
}
inline LL Pollard_Rho(LL n, int sed) {
LL i = 1, k = 2, x = rand()%(n-1)+1, y = x;
while(true) {
x = (multi(x, x, n) + sed) % n;
LL p = gcd(n, (y-x+n)%n);
if(p != 1 && p != n) return p;
if(y == x) return n;
if(++i == k) y = x, k <<= 1;
}
}
LL x[100];
inline bool MR(LL n) {
if(n == 2) return 1;
int s = 20, t = 0; LL u = n-1;
while(!(u&1)) ++t, u>>=1;
while(s--) {
LL a = rand()%(n-2) + 2;
x[0] = qpow(a, u, n);
for(int i = 1; i <= t; ++i) {
x[i] = multi(x[i-1], x[i-1], n);
if(x[i] == 1 && x[i-1] != 1 && x[i-1] != n-1) return 0;
}
if(x[t] != 1) return 0;
}
return 1;
}
void find(LL n, int sed) {
if(n == 1) return;
if(MR(n)) { arr.push_back(n); return; }
LL p = n; int k = sed;
while(p == n) p = Pollard_Rho(p, sed--);
find(p, k);
find(n/p, k);
}
LL N;
int main()
{
srand(19260817);
scanf("%lld", &N);
find(N, 107);
sort(arr.begin(), arr.end());
int siz = unique(arr.begin(), arr.end()) - arr.begin();
LL ans = N;
while(siz--)
ans /= arr[siz] , ans *= arr[siz]-1;
printf("%lld\n", ans);
}
BZOJ 4802: 欧拉函数 (Pollard-Rho)的更多相关文章
- BZOJ 4802 欧拉函数
4802: 欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Outp ...
- BZOJ 4802 欧拉函数(Pollard_Rho)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4802 [题目大意] 已知N,求phi(N),N<=10^18 [题解] 我们用P ...
- [BZOJ]4805: 欧拉函数求和
解题思路类似莫比乌斯函数之和 题目大意:求[1,n]内的欧拉函数$\varphi$之和.($n<=2*10^{9}$) 思路:令$ M(n)=\sum_{i=1}^{n}\varphi (i) ...
- [bzoj 2818]欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 枚举最大公约数,对于每一个质数p,只需要求出1<=x,y<=(n/p)范 ...
- BZOJ 2190 欧拉函数
思路: 递推出来欧拉函数 搞个前缀和 sum[n-1]*2+3就是答案 假设仪仗队是从零开始的 视线能看见的地方就是gcd(x,y)=1的地方 倒过来一样 刨掉(1,1) 就是ans*2+1 再加一下 ...
- BZOJ 4805: 欧拉函数求和 杜教筛
https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...
- 【刷题】BZOJ 4805 欧拉函数求和
Description 给出一个数字N,求sigma(phi(i)),1<=i<=N Input 正整数N.N<=2*10^9 Output 输出答案. Sample Input 1 ...
- 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式
找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...
- BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数
BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sa ...
随机推荐
- javascript学习笔记 BOM和DOM详解
js组成 我们都知道, javascript 有三部分构成,ECMAScript,DOM和BOM,根据宿主(浏览器)的不同,具体的表现形式也不尽相同,ie和其他的浏览器风格迥异. 1. DOM 是 W ...
- pandas合并excel文件
现在有多个excel 文件,需要对其进行合并 import pandas as pd path='' list1=[] #save data data=pd.read_excel(path,dtype ...
- Double write Buffer的配置
InnoDB和XtraDB使用称为doublewrite缓冲区的特殊功能来提供数据损坏的强大保证.想法是在写入数据文件之前将数据写入主表空间中的顺序日志.如果发生部分页面写入(换句话说,写入损坏),I ...
- JAVA开发者大会:拍拍贷MQ系统原理与应用
--喜欢记得关注我哟[shoshana]-- 前记: 5月12号参加了JAVA开发者大会,就<拍拍贷消息系统原理及应用> 作者:李乘胜老师 关于PMQ的分享整理一下笔记以及笔记的思考 和复 ...
- POJ 1177 矩形周长并 模板
Picture 题目链接 http://poj.org/problem?id=1177 Description A number of rectangular posters, photographs ...
- COGS 2633. [HZOI 2016] 数列操作e
[题目描述] 一个长度为n的序列,一开始序列数的权值都是0,有m次操作 支持两种操作, 1 L R x,给区间[L,R]内,第一个数加x,第二个数加2^2⋅x,第三个数加3^2⋅x...第R-L+1个 ...
- 关于DB2的使用(DB2数据命令)
公司所用的数据库有金仓和DB2 首先要用命令窗口直接打开db2需要在cmd中输入:db2cmd 1:启动DB2数据库:db2start 2:连接数据库:db2 connect to 数 ...
- MyBatis 示例-主键回填
测试类:com.yjw.demo.PrimaryKeyTest 自增长列 数据库表的主键为自增长列,在写业务代码的时候,经常需要在表中新增一条数据后,能获得这条数据的主键 ID,MyBatis 提供了 ...
- 关于Visual Studio 2019安装时共享组件、工具和 SDK安装位置不能更改的问题
解决办法: 更改注册表 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\Setup下的SharedInstallationPath项为所要的路径
- 关于SpringMVC拦截器和异常
一.文件上传 1.文件上传 SpringMVC为文件上传提供了直接的支持,这种类型是通过即插即用的MultipartResolver技术的.Spring用Jakarta Commons FileUpl ...