前言:

在APIO 2018 Day2下午听wuvin讲二分,听了一上午的神仙,现在终于有可以听懂了。

专题:

  1. 平均边权最大

    • 题目链接:https://www.questoj.cn/problem/34

    • 题解 by wuvin:

      二分平均值

      然后每条边减去平均值
      变为查找是否存在正环

      可以使用SPFA(反着写松弛)

  2. 最大闭合权子图变式

    • 题意:

      一个N个点M条边的图(不一定连通)。

      一个子图的优美程度定义为子图中的边数/子图的点数

      现在你需要求出最大能得到的优美程度是多少?

    • 题解by wuvin:

      照套路我们二分一下

      然后点带负权,边带正权

      选择边必须选择点

      变成最大权闭合子图,上网络流解决

    然而我并不会网络流求这个...

  3. 带权二分系列

    1. BZOJ 2654

      • 题目链接:
        https://www.lydsy.com/JudgeOnline/problem.php?id=2654

      • 题解by wuvin:

        如果我们对所有白色边的边权增加\(M*maxW\),那么最小生成树会得到一个白色边尽量少的方案。

        如果我们对所有白色边的边权增加\(-M*maxW\),那么最小生成树会得到一个白色边尽量多的方案。

        我们定义这个给白色边的额外权值为C。随着C从小到大遍历\([-M \times maxW,M \times maxW]\),那么我们的最优方案中的白色边会逐渐减少。

        如果某个C下,我们最优方案刚好得到K条边,那么这就是原题的最优解。因为最终代价为 原题的最优解+\(C*K\) 其中K和C都是常数,所以说最优解和原题是同一个最优解。

        所以我们可以二分C值,然后使用\(kruskal\)生成树即可。(假设白色边和黑色代价一样的时候选择白色边)

        但是注意一个细节,随着C的增加,白色边边数只是单调不增而已,可能出现C=1是得到5条白色边,C=1+eps是就是3条白色边,这是因为可能存在可以代替白色边的权值刚好之比白色边大1的黑色边。

        所以二分到最后需要特判一下。

    2. APIO 2014

      • 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3675

      • 题解by wuvin:

        Ans = C – 每一段内任意两个数的两两的乘积之和

        \(Ans=C-minimize(\sum_{i \in [li,ri]}\sum_{j \in [li,ri]} {Wi \times Wj})\)

        传统做法O(NK)的斜率DP

        我们来参数二分 —— 给每次划分附上一个额外的代价C。

        当\(C= +∞\)时,答案是只分一段。
        当\(C=0\)时,答案是每个数割一刀,分成n段。

        分的段数随着C的增长而减少
        于是可以采用刚刚类似的二分方法。

        二分之后就是正常的斜率DP了。
        最终复杂度 \(O(nlogV)\)

      • 相似:

        SDOI2016 征途

学习笔记--APIO 2018 二分专题 By wuvin的更多相关文章

  1. 「学习笔记」wqs二分/dp凸优化

    [学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...

  2. RxJava2.0学习笔记2 2018年7月3日 周二

    摘记: 1.map -- 转换  有些服务端的接口设计,会在返回的数据外层包裹一些额外信息,这些信息对于调试很有用,但本地显示是用不到的.使用 map() 可以把外层的格式剥掉,只留下本地会用到的核心 ...

  3. 算法图解学习笔记01:二分查找&大O表示法

    二分查找 二分查找又称折半查找,其输入的必须是有序的元素列表.二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止:如果x<a[ ...

  4. [笔记] APIO 2018 Day1

    计算折纸 computaional origami 全息算法(???) margulis napkin problem 素数里有任意长的等差数列 xor gate Σxi or gate(exact ...

  5. 【学习笔记】整体二分(BZOJ2738矩阵乘法)

    也是因为一道题才来学的... 然后就发现这道模板貌似是暑假初期在某校集训的时候的比赛题 并且好像没改= = 前置芝士 1.二分= = * CDQ分治[你要是知道CDQ分治的话这玩意就很好理解啦] *本 ...

  6. RxJava2.0学习笔记1 2018年3月23日 星期五

    参考博文:给初学者的RxJava2.0教程-简书     源码 :https://github.com/ssseasonnn/RxJava2Demo 1 若是发送多个onError, 则收到第二个on ...

  7. Android学习笔记_66_图片处理专题

    1.图片缩放:不解析整个图片信息. public class DemoActivity extends Activity { @Override public void onCreate(Bundle ...

  8. 图灵学院JAVA互联网架构师专题学习笔记

    图灵学院JAVA互联网架构师专题学习笔记 下载链接:链接: https://pan.baidu.com/s/1xbxDzmnQudnYtMt5Ce1ONQ 密码: fbdj如果失效联系v:itit11 ...

  9. wqs二分 学习笔记

    wqs二分学习笔记 wqs二分适用题目及理论分析 wqs二分可以用来解决这类题目: 给你一个强制要求,例如必须\(n\)条白边,或者划分成\(n\)段之类的,然后让你求出最大(小)值.但是需要满足图像 ...

随机推荐

  1. LeetCode 75. 颜色分类(Sort Colors)

    题目描述 给定一个包含红色.白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色.白色.蓝色顺序排列. 此题中,我们使用整数 0. 1 和 2 分别表示红色.白色 ...

  2. PHP中try catch的用法

    异常(Exception)用于在指定的错误发生时改变脚本的正常流程. 什么是异常? PHP 5 提供了一种新的面向对象的错误处理方法. 异常处理用于在指定的错误(异常)情况发生时改变脚本的正常流程.这 ...

  3. Vue Router实现页面跳转拦截

    场景: 某些页面需要登录之后才可以访问,在页面跳转前做处理,如果要访问的页面A需要登录,则强制调到登录页,并且记录要访问的页面A的链接,在登录成功后自动跳转到页面A 1.在router下的index. ...

  4. Ceph RBD 的实现原理与常规操作

    目录 文章目录 目录 前文列表 RBD RBD Pool 的创建与删除 块设备的创建与删除 块设备的挂载与卸载 新建客户端 块设备的扩缩容 RBD 块设备的 Format 1 VS Format 2 ...

  5. fastjson反序列化LocalDateTime失败的问题java.time.format.DateTimeParseException: Text '2019-05-24 13:52:11' could not be parsed at index 10

    本地java类 import org.springframework.format.annotation.DateTimeFormat; import java.time.LocalDateTime; ...

  6. 【D3D12学习手记】4.3.8 Create the Depth/Stencil Buffer and View

    我们现在需要创建深度/模板缓冲区. 如§4.1.5所述,深度缓冲区只是一个2D纹理,用于存储最近的可见对象的深度信息(如果使用模板(stencil),则也会存储模板信息). 纹理是一种GPU资源,因此 ...

  7. Powershell重命名文件夹

    $TargetFolder = "F:\Code\优化后\" $folders = get-childitem $TargetFolder -forceForeach ($Fold ...

  8. Linux目录权限管理

    Linux目录权限管理   实验目标: 通过本实验掌握centos7/rhel7目录权限的管理.包括配置目录的所属组.SGID.读/写/执行权限等. 实验步骤: 1.创建目录/home/instruc ...

  9. android4.2 webkit 中的jni

    在android 应用开发中使用WebView,当一个webveiw 被创建时, 也会去load 他所对应的动态库,这里动态库也就是传说中的webkit 内核等. C++ 层与java 层的交互也是通 ...

  10. docker-compose 部署elk+解决时间不对导致kibana找不到logstash定义的index + docker-compose安装

    1.拉代码 git clone https://github.com/deviantony/docker-elk.git 2.docker-compose配置文件 [root@host7 docker ...