最小生成树之Prim Kruskal算法(转)
最小生成树
Prim算法:
- //Prim
- struct edge{
- int to,len,next;
- }e[maxm];
- int box[maxn],cnt,used[maxn];
- void init(int n){
- for(int i=0;i<=n;i++)box[i]=-1;
- cnt=0;
- }
- void add(int from,int to,int len){
- e[cnt].to=to;
- e[cnt].len=len;
- e[cnt].next=box[from];
- box[from]=cnt++;
- }
- struct node{
- int v,len;
- node(){}
- node(int x,int y):v(x),len(y){}
- bool operator<(const node &x)const{
- return len>x.len;
- }
- };
- priority_queue<node> pq;
- int Prim(int n,int m){
- memset(used,0,sizeof(used));//初始化所有点,设状态为unseen
- int num=0,sum=0,now=1;
- do{
- used[now]=1;
- for(int t=box[now];t+1;t=e[t].next){
- int v=e[t].to,len=e[t].len;
- if(!used[v])pq.push(node(v,len));
- }
- while(!pq.empty()){
- node tmp=pq.top();pq.pop();
- int v=tmp.v,len=tmp.len;
- if(used[v])continue;
- now=v;
- sum+=len;
- break;
- }
- num++;
- }while(num<n);
- return sum;
- }
- //Prim
- struct edge{
- int to,len,next;
- }e[maxm];
- int box[maxn],cnt,used[maxn];
- void init(int n){
- for(int i=0;i<=n;i++)box[i]=-1;
- cnt=0;
- }
- void add(int from,int to,int len){
- e[cnt].to=to;
- e[cnt].len=len;
- e[cnt].next=box[from];
- box[from]=cnt++;
- }
- struct node{
- int v,len;
- node(){}
- node(int x,int y):v(x),len(y){}
- bool operator<(const node &x)const{
- return len>x.len;
- }
- };
- priority_queue<node> pq;
- int Prim(int n,int m){
- memset(used,0,sizeof(used));//初始化所有点,设状态为unseen
- int num=0,sum=0,now=1;
- do{
- used[now]=1;
- for(int t=box[now];t+1;t=e[t].next){
- int v=e[t].to,len=e[t].len;
- if(!used[v])pq.push(node(v,len));
- }
- while(!pq.empty()){
- node tmp=pq.top();pq.pop();
- int v=tmp.v,len=tmp.len;
- if(used[v])continue;
- now=v;
- sum+=len;
- break;
- }
- num++;
- }while(num<n);
- return sum;
- }
Kruskal算法:
- #define maxn 110
- #define maxm 10010
- using namespace std;
- int uf[maxn];
- struct edge{
- int u,v,len;
- }e[maxm];
- bool cmp(const edge &x,const edge &y){
- return x.len<y.len;
- }
- void init(int n){//初始化并查集
- for(int i=0;i<=n;i++)uf[i]=i;
- }
- int find(int x){
- if(x==uf[x])return x;
- return uf[x]=find(uf[x]);
- }
- int Union(int x,int y){//合并两个集合(如果x,y在同一集合,返回0,否则返回1)
- x=find(x),y=find(y);
- if(x!=y){
- uf[x]=y;
- return 1;
- }
- return 0;
- }
- int Kruskal(int n,int m){//n个点,m条边
- sort(e,e+m,cmp);//排序
- int sum=0;//最小生成树的权值和
- for(int i=0;i<m;i++){//从小到大枚举边
- int u=e[i].u,v=e[i].v,len=e[i].len;
- sum+=len*Union(u,v);
- }
- return sum;//返回权值和
- }
- #define maxn 110
- #define maxm 10010
- using namespace std;
- int uf[maxn];
- struct edge{
- int u,v,len;
- }e[maxm];
- bool cmp(const edge &x,const edge &y){
- return x.len<y.len;
- }
- void init(int n){//初始化并查集
- for(int i=0;i<=n;i++)uf[i]=i;
- }
- int find(int x){
- if(x==uf[x])return x;
- return uf[x]=find(uf[x]);
- }
- int Union(int x,int y){//合并两个集合(如果x,y在同一集合,返回0,否则返回1)
- x=find(x),y=find(y);
- if(x!=y){
- uf[x]=y;
- return 1;
- }
- return 0;
- }
- int Kruskal(int n,int m){//n个点,m条边
- sort(e,e+m,cmp);//排序
- int sum=0;//最小生成树的权值和
- for(int i=0;i<m;i++){//从小到大枚举边
- int u=e[i].u,v=e[i].v,len=e[i].len;
- sum+=len*Union(u,v);
- }
- return sum;//返回权值和
- }
最小生成树之Prim Kruskal算法(转)的更多相关文章
- 最小生成树(prim&kruskal)
最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法: 原始的加权连通图——————D被选作起点,选与之相连的权值 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 最小生成树(II)与Kruskal算法
为防止网页加载过慢,故分两章.上接https://www.cnblogs.com/Uninstalllingyi/p/10479470.html Kruskal算法——将森林合并成树 玩过瘟疫公司吗… ...
- 邻接表c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
graph.c #include <stdio.h> #include <stdlib.h> #include <limits.h> #include " ...
- 最小生成树求法 Prim + Kruskal
prim算法的思路 和dijkstra是一样的 每次选取一个最近的点 然后去向新的节点扩张 注意这里的扩张 不再是 以前求最短路时候的到新的节点的最短距离 而是因为要生成一棵树 所以是要连一根最短的连 ...
- 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...
- 数据结构之 图论---最小生成树(prim + kruskal)
图结构练习——最小生成树 Time Limit: 1000MS Memory limit: 65536K 题目描述 有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的.现在我们想知 ...
- 图解最小生成树 - 克鲁斯卡尔(Kruskal)算法
我们在前面讲过的<克里姆算法>是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的.同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树 ...
- 最小生成树——Prim算法和Kruskal算法
洛谷P3366 最小生成树板子题 这篇博客介绍两个算法:Prim算法和Kruskal算法,两个算法各有优劣 一般来说当图比较稀疏的时候,Kruskal算法比较快 而当图很密集,Prim算法就大显身手了 ...
随机推荐
- LeetCode 63. 不同路径 II(Unique Paths II)
题目描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). ...
- SpringSecurity——默认过滤器链
介绍Spring Security默认的过滤器链,介绍顺序按照过滤器在过滤器链中的顺序排序 1.WebAsyncManagerIntegrationFilter 将Security上下文与Spring ...
- win10搜索框突然不能使用了
备忘: win10搜索不出来了,使用以下方法恢复了,备忘下 1,首先打开任务管理器 重新启动wservice服务 2.发现这时候搜索依然不能使用 然后重新启动explorer.exe (1)右键关闭该 ...
- 生成ip地址表的不同姿势--脚本生成和echo命令生成
前段时间参加了几个线下的靶机攻防比赛,几十个队伍,如果攻击的时候一个个攻击就非常麻烦,浪费时间.所以需要批量攻击.批量攻击就需要一个完整的ip地址表.在这里总结一下... 有不足的地方欢迎评论 一.脚 ...
- ZeroC ICE java异步实现方式(ami/amd)
首先说说ami 和amd 的区别(以下为个人见解,仅供参考.如有疑问欢迎提出来) ami (异步方法调用): 仅仅基于ice 的同步方式扩展了异步的扩展方式,其他理念改动不大,使用起来好理解,但是服务 ...
- Python学习笔记:Unittest框架了解
Unittest单元测试框架不仅可以适用于单元测试,还可以适用于自动化测试用来的开发与执行,该测试框架可执行测试用例,并提供丰富的断言方法,最终生成测试报告. 一.Unittest常用方法 1.Tes ...
- C基础知识(9):输入输出、文件读写
输入输出 (1) getchar() & putchar() 函数: 读写字符. (2) scanf() 和 printf() 函数:根据提供的format来转换输入为其他数据类型,并根据提供 ...
- markdown-博客编辑
1. 快捷键 2. 基本语法 2.1 字体设置斜体.粗体.删除线 2.2 分级标题 2.3 链接 2.4 分割线 2.5 代码块 2.6 引用 2.7 列表 2.8 表格 3. 常用技巧 3.1 换行 ...
- Ubuntu强制修改root密码
Ubuntu忘记超级用户root密码并重新设置密码 解决方法如下: 第一种方法——不进入recovery mode设置(推荐) 说明案例:Ubuntu版本:Ubuntu 16.04.3 LTS Ste ...
- Leetcode之广度优先搜索(BFS)专题-529. 扫雷游戏(Minesweeper)
Leetcode之广度优先搜索(BFS)专题-529. 扫雷游戏(Minesweeper) BFS入门详解:Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ary Tre ...