题面

这种比赛时只有11个人做出来的题一般来说都是暴难的, 我也不知道我怎么搞出来的www

看完这个题第一感觉就是要容斥,至少有一条某种边的方案已经比较难求了,而直接算三种边都至少存在一条的方案数就更难了2333

那么不妨考虑从反面容斥吧

设把三种边的存在情况表示成三进制的话,1表示至少有一条 ,0表示一条都没有,?表示这种边没有限制,那么容斥可以得到的是 : f[111] = f[???] - (f[0??]+f[?0?]+f[??0]) + (f[00?]+f[0?0]+f[?00]) - f[000]

证明可以通过二项式系数的关系导出,并且可以推广到N维形式。

显然等号右边的每个f[]都是比较好求的(但是会涉及很多算法),不过注意一些f[]是恒等的(根据图的对称性可得),所以不用每个f[]都去写一个函数算。算等号右边的f[]贡献了本题的大部分码量,这里就不一个一个说了,相信你们都能想出来的hhhhh

最后注意一下f[000],当且仅当 m==0 时 f[000]=2^n;否则 f[000]=0。

我一开始就因为这个WA了,想当然以为不可能每种边都没有(I'm reall a bro in bro),即 f[000]=0.

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1200005; int n,m,v[55],p[55],M,f[N];
bool g[55][55];
ll ans,all; inline bool Can(int S,int ad){
for(int i=0;i<M;i++)
for(int j=i+1;j<M;j++) if(g[i+ad][j+ad]&&((1<<i)&S)&&((1<<j)&S)) return 0;
return 1;
} inline void Get1(){
for(int s=0;s<(1<<M);s++) if(Can(s,0)) f[s]++;
} inline void maintain(){
for(int i=0;i<M;i++)
for(int j=0;j<(1<<M);j++) if(!((1<<i)&j)) f[j|(1<<i)]+=f[j];
} inline ll Get2(){
ll an=0;
for(int s=0,now,al=(1<<M)-1;s<(1<<(n-M));s++) if(Can(s,M)){
now=0;
for(int i=M;i<n;i++) if((1<<(i-M))&s)
for(int j=0;j<M;j++) if(g[i][j]) now|=1<<j;
an+=f[al^now];
}
return an;
} inline ll solve1(){
/* meet in the middle:
一半: 枚举合法二进制并用FMT的处理(类似高维每维值域{0,1}的前缀和)
映射到所有包含它的二进制上 另一半: 枚举合法二进制,直接找FMT数组对应的位置加就OK了
*/
Get1();
maintain();
return Get2();
} int getfa(int x){ return p[x]==x?x:(p[x]=getfa(p[x]));} inline ll solve2(){
ll an=1;
for(int i=0;i<n;i++) p[i]=i; for(int i=0,fa,fb;i<n;i++)
for(int j=i+1;j<n;j++) if(g[i][j]){
fa=getfa(i),fb=getfa(j);
if(fa!=fb) p[fa]=fb;
} for(int i=0;i<n;i++) if(v[getfa(i)]!=2) v[p[i]]=2,an<<=1; return an;
} inline ll solve3(){
ll an=1; for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++) if(g[i][j]) v[i]=v[j]=3;
for(int i=0;i<n;i++) if(v[i]!=3) an<<=1; return an;
} bool color(int x,int c){
v[x]=c;
for(int i=0;i<n;i++) if(g[x][i])
if(v[i]==v[x]) return 0;
else if(v[i]<4&&!color(i,9-c)) return 0;
return 1;
} inline ll solve4(){
ll an=1; for(int i=0;i<n;i++) if(v[i]<4)
if(!color(i,4)) return 0; else an<<=1; return an;
} int main(){
scanf("%d%d",&n,&m),all=(1ll<<n)-1,M=n+1>>1;
if(!m) ans-=all+1;//000 type
for(int U,V;m;m--)
scanf("%d%d",&U,&V),U--,V--,g[V][U]=g[U][V]=1; ans+=all+1;// ??? type
ans-=2*solve1();// 0?? and ??0 type , cause its symmetry , we can simply double the ans
ans-=solve2();// ?0? type
ans+=2*solve3();// ?00 and 00? type , similar to solve1()
ans+=solve4();//0?0 type cout<<ans<<endl;
return 0;
}

  

Codeforces 1221 G Graph And Numbers的更多相关文章

  1. [codeforces 549]G. Happy Line

    [codeforces 549]G. Happy Line 试题描述 Do you like summer? Residents of Berland do. They especially love ...

  2. Codeforces 385C Bear and Prime Numbers

    题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...

  3. CodeForces 794 G.Replace All

    CodeForces 794 G.Replace All 解题思路 首先如果字符串 \(A, B\) 没有匹配,那么二元组 \((S, T)\) 合法的一个必要条件是存在正整数对 \((x,y)\), ...

  4. Codeforces 1207 G. Indie Album

    Codeforces 1207 G. Indie Album 解题思路 离线下来用SAM或者AC自动机就是一个单点加子树求和,套个树状数组就好了,因为这个题广义SAM不能存在 \(len[u] = l ...

  5. Codeforces 385C Bear and Prime Numbers(素数预处理)

    Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...

  6. Codeforces 724 G Xor-matic Number of the Graph 线性基+DFS

    G. Xor-matic Number of the Graph http://codeforces.com/problemset/problem/724/G 题意:给你一张无向图.定义一个无序三元组 ...

  7. codeforces gym100801 Problem G. Graph

    传送门:https://codeforces.com/gym/100801 题意: 给你一个DAG图,你最多可以进行k次操作,每次操作可以连一条有向边,问你经过连边操作后最小拓扑序的最大值是多少 题解 ...

  8. Codeforces 1082 G - Petya and Graph

    G - Petya and Graph 思路: 最大权闭合子图 对于每条边,如果它选了,那么它连的的两个点也要选 边权为正,点权为负,那么就是求最大权闭合子图 代码: #pragma GCC opti ...

  9. @codeforces - 1221G@ Graph And Numbers

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的无向图. 现在要求给每个点写上 0 或 ...

随机推荐

  1. NIPS 2018 | 程序翻译新突破:UC伯克利提出树到树的程序翻译神经网络

    NIPS 2018 | 程序翻译新突破:UC伯克利提出树到树的程序翻译神经网络 机器之心 ​ 已认证的官方帐号 49 人赞同了该文章 选自arXiv,作者:Xinyun Chen.Chang Liu. ...

  2. (三)easyUI之树形组件

    一.同步树 1.1 概念 所有节点一次性加载完成 1.2 案例 1.2.1 数据库设计 1.2.2 编码 index.jsp <%@ page language="java" ...

  3. AES密码算法详解(转自https://www.cnblogs.com/luop/p/4334160.html)

    0 AES简介 我们知道数据加密标准(Data Encryption Standard: DES)的密钥长度是56比特,因此算法的理论安全强度是256.但二十世纪中后期正是计算机飞速发展的阶段,元器件 ...

  4. tfs如何为工作项添加变更集

    今天工作中遇到的,可惜之前没怎么用过TFS. 我这是最后一次签入的时候关联了工作项.目的是要把先前签入的绑定到该任务上. 团队自愿管理器->查找历史记录->双击最后一次绑定工作项的变更集- ...

  5. VBA学习资料分享-6

    从网上抓取数据到EXCEL中是VBA的一个常用之处,今天分享下VBA网抓的一些套路,主要有以下几种: 第一种:msxml2.xmlhttp/Microsoft.XMLHTTP/WinHttp.WinH ...

  6. C# 哥德巴赫猜想的实现方式 region分区编写

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  7. (详细)JAVA使用JDBC连接MySQL数据库(1)- 软件

    欢迎任何形式的转载,但请务必注明出处. 本节为下面四个的安装和配置 jdk Eclipse MySQL mysql connectors 一.jdk 点击查看安装和环境配置教程 二.Eclipse 点 ...

  8. 如何画svg路径图

    在画路径图之前,首先得在package.json引入2个依赖 废话不多说,直接上代码 <style> .green { position: absolute; } .blue { posi ...

  9. js入门第一篇

    简介:JavaScript 运行在客户端(浏览器)是一种客户端语言,javascript的引擎被称为JavaScript引擎,为浏览器的一部分广泛用于客户端的脚本语言 应用场景:网页特效, 服务端开发 ...

  10. goroutine的设计与实现

    goroutine背后的系统知识 http://www.sizeofvoid.net/goroutine-under-the-hood/ 下周写完