题面

这种比赛时只有11个人做出来的题一般来说都是暴难的, 我也不知道我怎么搞出来的www

看完这个题第一感觉就是要容斥,至少有一条某种边的方案已经比较难求了,而直接算三种边都至少存在一条的方案数就更难了2333

那么不妨考虑从反面容斥吧

设把三种边的存在情况表示成三进制的话,1表示至少有一条 ,0表示一条都没有,?表示这种边没有限制,那么容斥可以得到的是 : f[111] = f[???] - (f[0??]+f[?0?]+f[??0]) + (f[00?]+f[0?0]+f[?00]) - f[000]

证明可以通过二项式系数的关系导出,并且可以推广到N维形式。

显然等号右边的每个f[]都是比较好求的(但是会涉及很多算法),不过注意一些f[]是恒等的(根据图的对称性可得),所以不用每个f[]都去写一个函数算。算等号右边的f[]贡献了本题的大部分码量,这里就不一个一个说了,相信你们都能想出来的hhhhh

最后注意一下f[000],当且仅当 m==0 时 f[000]=2^n;否则 f[000]=0。

我一开始就因为这个WA了,想当然以为不可能每种边都没有(I'm reall a bro in bro),即 f[000]=0.

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1200005; int n,m,v[55],p[55],M,f[N];
bool g[55][55];
ll ans,all; inline bool Can(int S,int ad){
for(int i=0;i<M;i++)
for(int j=i+1;j<M;j++) if(g[i+ad][j+ad]&&((1<<i)&S)&&((1<<j)&S)) return 0;
return 1;
} inline void Get1(){
for(int s=0;s<(1<<M);s++) if(Can(s,0)) f[s]++;
} inline void maintain(){
for(int i=0;i<M;i++)
for(int j=0;j<(1<<M);j++) if(!((1<<i)&j)) f[j|(1<<i)]+=f[j];
} inline ll Get2(){
ll an=0;
for(int s=0,now,al=(1<<M)-1;s<(1<<(n-M));s++) if(Can(s,M)){
now=0;
for(int i=M;i<n;i++) if((1<<(i-M))&s)
for(int j=0;j<M;j++) if(g[i][j]) now|=1<<j;
an+=f[al^now];
}
return an;
} inline ll solve1(){
/* meet in the middle:
一半: 枚举合法二进制并用FMT的处理(类似高维每维值域{0,1}的前缀和)
映射到所有包含它的二进制上 另一半: 枚举合法二进制,直接找FMT数组对应的位置加就OK了
*/
Get1();
maintain();
return Get2();
} int getfa(int x){ return p[x]==x?x:(p[x]=getfa(p[x]));} inline ll solve2(){
ll an=1;
for(int i=0;i<n;i++) p[i]=i; for(int i=0,fa,fb;i<n;i++)
for(int j=i+1;j<n;j++) if(g[i][j]){
fa=getfa(i),fb=getfa(j);
if(fa!=fb) p[fa]=fb;
} for(int i=0;i<n;i++) if(v[getfa(i)]!=2) v[p[i]]=2,an<<=1; return an;
} inline ll solve3(){
ll an=1; for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++) if(g[i][j]) v[i]=v[j]=3;
for(int i=0;i<n;i++) if(v[i]!=3) an<<=1; return an;
} bool color(int x,int c){
v[x]=c;
for(int i=0;i<n;i++) if(g[x][i])
if(v[i]==v[x]) return 0;
else if(v[i]<4&&!color(i,9-c)) return 0;
return 1;
} inline ll solve4(){
ll an=1; for(int i=0;i<n;i++) if(v[i]<4)
if(!color(i,4)) return 0; else an<<=1; return an;
} int main(){
scanf("%d%d",&n,&m),all=(1ll<<n)-1,M=n+1>>1;
if(!m) ans-=all+1;//000 type
for(int U,V;m;m--)
scanf("%d%d",&U,&V),U--,V--,g[V][U]=g[U][V]=1; ans+=all+1;// ??? type
ans-=2*solve1();// 0?? and ??0 type , cause its symmetry , we can simply double the ans
ans-=solve2();// ?0? type
ans+=2*solve3();// ?00 and 00? type , similar to solve1()
ans+=solve4();//0?0 type cout<<ans<<endl;
return 0;
}

  

Codeforces 1221 G Graph And Numbers的更多相关文章

  1. [codeforces 549]G. Happy Line

    [codeforces 549]G. Happy Line 试题描述 Do you like summer? Residents of Berland do. They especially love ...

  2. Codeforces 385C Bear and Prime Numbers

    题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...

  3. CodeForces 794 G.Replace All

    CodeForces 794 G.Replace All 解题思路 首先如果字符串 \(A, B\) 没有匹配,那么二元组 \((S, T)\) 合法的一个必要条件是存在正整数对 \((x,y)\), ...

  4. Codeforces 1207 G. Indie Album

    Codeforces 1207 G. Indie Album 解题思路 离线下来用SAM或者AC自动机就是一个单点加子树求和,套个树状数组就好了,因为这个题广义SAM不能存在 \(len[u] = l ...

  5. Codeforces 385C Bear and Prime Numbers(素数预处理)

    Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...

  6. Codeforces 724 G Xor-matic Number of the Graph 线性基+DFS

    G. Xor-matic Number of the Graph http://codeforces.com/problemset/problem/724/G 题意:给你一张无向图.定义一个无序三元组 ...

  7. codeforces gym100801 Problem G. Graph

    传送门:https://codeforces.com/gym/100801 题意: 给你一个DAG图,你最多可以进行k次操作,每次操作可以连一条有向边,问你经过连边操作后最小拓扑序的最大值是多少 题解 ...

  8. Codeforces 1082 G - Petya and Graph

    G - Petya and Graph 思路: 最大权闭合子图 对于每条边,如果它选了,那么它连的的两个点也要选 边权为正,点权为负,那么就是求最大权闭合子图 代码: #pragma GCC opti ...

  9. @codeforces - 1221G@ Graph And Numbers

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的无向图. 现在要求给每个点写上 0 或 ...

随机推荐

  1. hdu 6180贪心

    题意:有m个工程,一台机器在同一时间只能运行一个工程,告诉你每个工程的起始时间和结束时间,求出最少要多少个机器以及最小的机器总运行时间(机器开始了就不能停了,直到用完该台机器才停止). 题解:由于这里 ...

  2. (二十五)JSP九大内置对象(转)

    --转载自孤傲苍狼博客 一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质 ...

  3. (五)web服务中的异常处理

    一.服务端发布服务 package com.webservice; import javax.jws.WebParam; import javax.jws.WebResult; import java ...

  4. 【Transact-SQL】统计某字段中的值第一次出现后的2小时内出现的次数

    原文:[Transact-SQL]统计某字段中的值第一次出现后的2小时内出现的次数 table1 name createdate a 2011-03-01 10:00:00 a 2011-03-01 ...

  5. XML-RPC-1概述

    XML-RPC是一个远程过程调用(远端程序呼叫)(remote procedure call,RPC)的分布式计算协议,通过XML将调用函数封装,并使用HTTP协议作为传送机制.   中文名 XML- ...

  6. Pyhon中迭代器与生成器

    迭代器 我们知道,可以直接用for循环的数据类型有以下几种: 一类是集合数据类型:list.tuple.dict.set.str等 一类是generator:包括生成器和带yield的generato ...

  7. 1.NoSQL入门和概述

    入门概述: 1.为什么要用到NoSQL a)  单机MySQL的美好年代,在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付.在那个时候,更多的都是静态网页,动态交互类型的网站不多. ...

  8. man 手册--nc

    man 手册--nc NCAT(1) Ncat Reference Guide NCAT(1) NAME ncat - Concatenate and redirect sockets SYNOPSI ...

  9. powerlink的Windows-DEMO生成笔记

    资料准备: 1.Visual studio 2010 2.Cmake 3.Powerlink 2.7.1源码 具体下载请到相关页面去获取. 新版的powerlink分为两个部分: 1.协议栈 2.应用 ...

  10. ZZNUOJ-2157: 水滴来袭-【干扰阅读-卡模糊精度1e-8的问题】

    ZZNUOJ-2157: 水滴来袭 那是一个冷雨霏霏的秋天的下午,当罗辑拿着枪威胁三体文明的时候,如果过了三十秒三体人还没有同他展开谈判,罗辑就会扣动扳机即刻结束自己的生命,随后他身上的核弹控制器就会 ...