scikit-learn中的机器学习算法封装——kNN
接前面 https://www.cnblogs.com/Liuyt-61/p/11738399.html
回过头来看这张图,什么是机器学习?就是将训练数据集喂给机器学习算法,在上面kNN算法中就是将特征集X_train和Y_train传给机器学习算法,然后拟合(fit)出一个模型,然后输入样例到该模型进行预测(predict)输出结果。
而对于kNN来说,算法的模型其实就是自身的训练数据集,所以可以说kNN是一个不需要训练过程的算法。
k近邻算法是非常特殊的,可以被认为是没有模型的算法
为了和其他算法统一,可以认为训练数据集就是模型本身
使用scikit-learn中的kNN实现
#先导入我们需要的包
from sklearn.neighbors import KNeighborsClassifier #特征点的集合
raw_data_X = [[3.393533211, 2.331273381],
[3.110073483, 1.781539638],
[1.343808831, 3.368360954],
[3.582294042, 4.679179110],
[2.280362439, 2.866990263],
[7.423436942, 4.696522875],
[5.745051997, 3.533989803],
[9.172168622, 2.511101045],
[7.792783481, 3.424088941],
[7.939820817, 0.791637231]
]
#0就代表良性肿瘤,1就代表恶性肿瘤
raw_data_y = [, , , , , , , , , ]
#我们使用raw_data_X和raw_data_y作为我们的训练集
X_train = np.array(raw_data_X) #训练数据集的特征
Y_train = np.array(raw_data_y) #训练数据集的结果(标签) #首先我们需要对包中的KNeighborsClassifier进行实例化,其中可以传入k的值作为参数
kNN_classifier = KNeighborsClassifier(n_neighbors=)
#然后先执行fit方法进行拟合操作得出模型,将训练数据集作为参数传入
kNN_classifier.fit(X_train,Y_train)
#执行predict预测操作,传入样本数据
#因为使用scikit-learn中的kNN算法是对一组矩阵形式的数据进行一条条的预测,所以我们传入的样本数据集参数也应该先转换为矩阵的形式
X_predict = x.reshape(,-) #因为我们已知我们传入的数据只有一行
y_predict = kNN_classifier.predict(X_predict)
In[]: y_predict
Out[]: array([])
#所以此时的y_predict即为我们所需要的样本的预测结果
In[]: y_predict[]
Out[]:
基于scikit-learn的fit-predict模式,进行重写我们的Python实现,进行简单的自定义fit和predict方法实现kNN
import numpy as np
from math import sqrt
from collections import Counter class KNNClassifier: def __init__(self, k):
'''初始化KNN分类器'''
#使用断言进行判定传入的参数的合法性
assert k >= , "k must be valid"
self.k = k;
#此处定义为私有变量,外部成员不可访问进行操作
self._X_train = None
self._Y_train = None def fit(seld, X_train, Y_train):
'''根据训练集X_train和Y_train训练kNN分类器'''
assert X_train.shape[] == Y_train.shape[],\
"the size of X_train must be equal to the size of Y_train"
assert self.k <= X_train.shape[],\
"the size of X_train must be at least k" self._X_train = X_train
self._Y_train = Y_train
return self #X_predict 为传入的矩阵形式数据
def predict(self, X_predict):
'''给定待预测数据集X_train,返回表示X_predict的结果向量'''
assert self._X_train is not None and self._Y_train is not None,\
"must fit before predict!"
assert X_predict.shape[] == self._X_train.shape[],\
"the feature number of X_predict must equal to X_train" #使用私有方法_predict(x)进行对x进行预测
#循环遍历X_predict,对其中每一条样本数据集执行私有方法_predict(x),将预测结果存入y_predict中
y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict) def _predict(self, x):
'''给定单个待预测数据x,返回x的预测结果值'''
'''此处的代码逻辑和重写之前的代码逻辑一样'''
distances = [sqrt(np.sum(x_train - x) ** ) for x_train in self._X_train]
nearest = np.argsort(distances) topk_y = [self._Y_train[i] for i in nearest[:self.k]]
votes = Counter(topk_y)
return votes.most_common()[][] #重写对象的“自我描述”
def __repr__(self):
return "KNN(k=%d)" % self.k
scikit-learn中的机器学习算法封装——kNN的更多相关文章
- 在opencv3中的机器学习算法
在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier 我已在另外一篇博文中介 ...
- 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...
- opencv3中的机器学习算法之:EM算法
不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...
- 机器学习算法之——KNN、Kmeans
一.Kmeans算法 kmeans算法又名k均值算法.其算法思想大致为:先从样本集中随机选取 kk 个样本作为簇中心,并计算所有样本与这 kk 个“簇中心”的距离,对于每一个样本,将其划分到与其距离最 ...
- 在opencv3中的机器学习算法练习:对OCR进行分类
OCR (Optical Character Recognition,光学字符识别),我们这个练习就是对OCR英文字母进行识别.得到一张OCR图片后,提取出字符相关的ROI图像,并且大小归一化,整个图 ...
- 机器学习算法之:KNN
基于实例的学习方法中,最近邻法和局部加权回归法用于逼近实值或离散目标函数,基于案例的推理已经被应用到很多任务中,比如,在咨询台上存储和复用过去的经验:根据以前的法律案件进行推理:通过复用以前求解的问题 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- 机器学习算法·KNN
机器学习算法应用·KNN算法 一.问题描述 验证码目前在互联网上非常常见,从学校的教务系统到12306购票系统,充当着防火墙的功能.但是随着OCR技术的发展,验证码暴露出的安全问题越来越严峻.目前对验 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
随机推荐
- 17点睛Spring4.1-@Conditional
17.1 @Conditional @Conditional为按照条件配置spring的bean提供了支持,即满足某种条件下,怎么配置对应的bean; 应用场景 当某一个jar包在classpath中 ...
- vue 的反向代理
情景描述: 原本的vue打包文件是放在.net core 项目的www文件夹下去发布的.这样运行没问题,但是公司领导让服务器单独部署vue,前后端要完全分离.然后这样就出问题了,有一个上传接口的地址一 ...
- Span复习
Span复习 using System; namespace Span复习 { class Program { static void Main(string[] args) { //Console. ...
- 使用jetpack 4.2.2对jetson tx2进行刷机
一.前言 加班加点几天今天终于成功刷机,记录一下成功的一些过程,以方便同样卡住的朋友参考. 延续官网教程[1]中对设备的叫法,pc机称为host,tx2称为target. 二.过程 1. host相关 ...
- 线性表——顺序表的实现与讲解(C++描述)
线性表 引言 新生安排体检,为了 便管理与统一数据,学校特地规定了排队的方式,即按照学号排队,谁在前谁在后,这都是规定好的,所以谁在谁不在,都是非常方便统计的,同学们就像被一条线(学号)联系起来了,这 ...
- pytorch1.0实现AutoEncoder
AutoEncoder (自编码器-非监督学习)神经网络也能进行非监督学习, 只需要训练数据, 不需要标签数据. 自编码就是这样一种形式.自编码能自动分类数据, 而且也能嵌套在半监督学习的上面, 用少 ...
- Zuul【入门】
1.创建eureka-server注册中心工程,配置跟之前讲eureka文章中一样,这里不再赘述 1.1.端口8888 2.创建一个demo-client工程 2.1.demo-client启动类跟之 ...
- 人工智能对人类有哪些影响 选择Python入门怎样
人工智能对人类有哪些影响?选择Python入门怎样?人工智能是科技时代进步的产物,也是目前人们非常关注的一个产业.那么,随着人工智能的发展,对人类生活的有哪些影响呢? 1.人工智能对文化产业影响 据了 ...
- (三)Spring Boot 官网文档学习之默认配置
文章目录 继承 `spring-boot-starter-parent` 覆盖默认配置 启动器 原文地址:https://docs.spring.io/spring-boot/docs/2.1.3.R ...
- Volatile的应用场景
1.当一个变量可能会被意想不到的更新时,要使用volatile来声明该变量,告诉编译器它所修饰的变量的值可能会在任何时刻被意外的更新. 2.语法 volatile int foo; int volat ...