1.需求:将Json格式的数据处理后插入新表中

数据文件如下:rating.json,文件格式:{"movie":"2858","rate":"5","timeStamp":"978159467","uid":"17"}

{"movie":"2028","rate":"5","timeStamp":"978301619","uid":"1"}
{"movie":"531","rate":"4","timeStamp":"978302149","uid":"1"}
{"movie":"3114","rate":"4","timeStamp":"978302174","uid":"1"}
{"movie":"608","rate":"4","timeStamp":"978301398","uid":"1"}
{"movie":"1246","rate":"4","timeStamp":"978302091","uid":"1"}
{"movie":"1357","rate":"5","timeStamp":"978298709","uid":"2"}
{"movie":"3068","rate":"4","timeStamp":"978299000","uid":"3"}
{"movie":"1537","rate":"4","timeStamp":"978299620","uid":"3"}
{"movie":"434","rate":"2","timeStamp":"978300174","uid":"4"}
{"movie":"2126","rate":"3","timeStamp":"978300123","uid":"5"}
{"movie":"2067","rate":"5","timeStamp":"978298625","uid":"6"}
{"movie":"1265","rate":"3","timeStamp":"978299712","uid":"7"}

实现步骤:
  1.使用Hive创建原始表rate_json,并将rating.json文件加载到该表
    hive> create table rat_json(line string) row format delimited;

    hive> load data local inpath '/root/rating.json' into table rat_json;

    

  2.实现方案1:自定义函数实现json数据字段的切分

    2.1:开发java类继承UDF,然后重载evaluate方法

    2.2:上传jar包至服务器,并将jar包添加到hive的classpath下:hive>add jar /data/udf.jar;

    2.3:创建临时函数与开发好的java class关联:create temporary function parsejson as 'cn.hive.demo.JsonParser';

    

  3.实现方案2:使用内置函数split进行字段切分,然后保存到一张新表中;

   

   insert overwrite table t_rating
    select split(parsejson(line),'\t')[0]as movieid,split(parsejson(line),'\t')[1] as rate,

    split(parsejson(line),'\t')[2] as timestring,split(parsejson(line),'\t')[3] as uid
   from rat_json limit 10; 

   

  4.实现方案3:使用内置jason函数;

   select get_json_object(line,'$.movie') as moive,get_json_object(line,'$.rate') as rate from rat_json;
   

  5.实现方案4:Hive的 Transform 关键字提供了在SQL中调用自写脚本的功能,适合实现Hive中没有的功能又不想写UDF的情况

    使用transform+python脚本的方式

   根据上述过程,将原始表rat_json中的json格式的数据进行切分并存储到t_rating表中:

    

     5.1:编辑一个Python脚本:weekday_mapper.py

#!/bin/python
import sys
import datetime for line in sys.stdin://标准输出到屏幕上的东西
line = line.strip()
movieid, rating, unixtime,userid = line.split('\t')//t_rating表输出到屏幕上的数据是以table键隔开显示的
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print '\t'.join([movieid, rating, str(weekday),userid])

   5.2:将文件加入hive的classpath:hive> add file /root/weekday_mapper.py;

      5.3:执行查询

    hive>create table u_data_new as
                SELECT
                    TRANSFORM (movieid, rate, timestring,uid)
                    USING 'python weekday_mapper.py'
                 AS (movieid, rate, weekday,uid)
       FROM t_rating;

   

   使用transform+python的方式去转换unixtime为weekday

    

  

  

 

  

  

  

11_Hive TransForm 案例的更多相关文章

  1. day11hadoop高可用和Hive

    PS:视频一直就是在演示   高可用(比较偏运维一点) PS:Active是对外提供服务的,standBy是从属备用的:但是他们是怎样保证同步的数据的呢?一个运行中zookeeper上的第三方那个工具 ...

  2. Hive的DML操作

    1. Load 在将数据加载到表中时,Hive 不会进行任何转换.加载操作是将数据文件移动到与 Hive表对应的位置的纯复制/移动操作. 语法结构: load data [local] inpath ...

  3. css3 知识点积累

    -moz-    兼容火狐浏览器-webkit-  兼容chrome 和safari1.角度  transform:rotate(30dge)  水平线与div 第四象限30度  transform: ...

  4. 机械表小案例之transform的应用

    这个小案例主要是对transform的应用. 时钟的3个表针分别是3个png图片,通过setInterval来让图片转动.时,分,秒的转动角度分别是30,6,6度. 首先,通过new Date函数获取 ...

  5. 56、Spark Streaming: transform以及实时黑名单过滤案例实战

    一.transform以及实时黑名单过滤案例实战 1.概述 transform操作,应用在DStream上时,可以用于执行任意的RDD到RDD的转换操作.它可以用于实现,DStream API中所没有 ...

  6. H5案例分享:移动端滑屏 touch事件

    移动端滑屏 touch事件 移动端触屏滑动的效果的效果在电子设备上已经被应用的越来越广泛,类似于PC端的图片轮播,但是在移动设备上,要实现这种轮播的效果,就需要用到核心的touch事件.处理touch ...

  7. 通过案例对 spark streaming 透彻理解三板斧之三:spark streaming运行机制与架构

    本期内容: 1. Spark Streaming Job架构与运行机制 2. Spark Streaming 容错架构与运行机制 事实上时间是不存在的,是由人的感官系统感觉时间的存在而已,是一种虚幻的 ...

  8. 通过案例对 spark streaming 透彻理解三板斧之一: spark streaming 另类实验

    本期内容 : spark streaming另类在线实验 瞬间理解spark streaming本质 一.  我们最开始将从Spark Streaming入手 为何从Spark Streaming切入 ...

  9. 精选19款华丽的HTML5动画和实用案例

    下面是本人收集的19款超酷HTML5动画和实用案例,觉得不错,分享给大家. 1.HTML5 Canvas火焰喷射动画效果 还记得以前分享过的一款HTML5烟花动画HTML5 Canvas烟花特效,今天 ...

随机推荐

  1. HOSTS大法解决Github Clone太慢

    经常要clone github中的一些项目,无奈如果不爬梯子的话速度实在是龟速,经常1k/s,于是搜了下解决方法,改HOSTS大法. Windows下在C:/Windows/system32/driv ...

  2. asp.net网站访问时不能显示页面

    web => 属性 => web => servers =>create virtual directory

  3. python-Web-flask-数据库

    3 数据库: Flask-SQLAlchemy 安装及连接 pip install flask-sqlalchemy pip install flask-mysqldb # 数据库链接地址 app.c ...

  4. 义隆单片机学习笔记之(一) 硬件框架&资源下载

    参考网址: 点击链接或右键链接地址 (台湾义隆官网)http://www.emc.com.tw/chs/tech_8bit.asp (EM78P153K官方资料)http://www.emc.com. ...

  5. 【VS开发】fopen 文本文件与二进制文件区别

    在学习C语言文件操作后,我们都会知道打开文件的函数是fopen,也知道它的第二个参数是 标志字符串.其中,如果字符串中出现'b',则表明是以打开二进制(binary)文件,否则是打开文本文件. 那么什 ...

  6. 学习笔记:CentOS7学习之二十三: 跳出循环-shift参数左移-函数的使用

    目录 学习笔记:CentOS7学习之二十三: 跳出循环-shift参数左移-函数的使用 23.1 跳出循环 23.1.1 break和continue 23.2 Shift参数左移指令 23.3 函数 ...

  7. opencv实现人脸识别(二) 人脸图像采集模块

    这一步我们开始搭建第一个模块,用来检测到图像中的人脸位置,并将它拍下来保存在指定路径 流程图: 代码实现: import cv2 def pic(cam): # 调用笔记本内置摄像头,所以参数为0,如 ...

  8. python pyyaml 使用教程(代码案例)

    test.py 内容 # 运行前,请先安装pyyaml模块 # pip3 install -i https://pypi.douban.com/simple/ pyyaml==5.1.1 import ...

  9. analysis_tools

  10. 使用haystack实现django全文检索搜索引擎功能

    前言 django是python语言的一个web框架,功能强大.配合一些插件可为web网站很方便地添加搜索功能. 搜索引擎使用whoosh,是一个纯python实现的全文搜索引擎,小巧简单. 中文搜索 ...