SVM的概率输出(Platt scaling)

2015-10-22 10:38:19 闲渔Love吉他 阅读数 8121 文章标签: Platt Scaling Calibr 更多

分类专栏: 计算机视觉
 
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

最近在研究基于样本的相似度度量问题,其中用到了分类器的概率输出(Platt scaling),大概了解了一下用法,总结的比较简单。

Platt scaling参考wiki的定义,Platt scaling,也叫Platt calibration,是一种将分类模型的输出变换为基于类别的概率分布的方法(可能翻译的不太准确,附上原文:In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.)Platt scaling最初是用来解决SVM分类结果的概率输出(也可用于其他分类方法),采用逻辑斯蒂回归模型拟合分类器分数(classifier's socre)。

这里定义SVM的输出(非阈值化的):

其中

Platt基于Bayes准则,用后验概率 P(y=1|f) 替代类别条件密度 p(f|y),采用Sigmoid的参数化形式表达。

模型有两个参数A和B,采用最大似然估计训练,定义新的训练集合,其中ti为目标概率:

最小化训练数据的Negative Log Likelihood,目标函数为cross-entropy error function:

其中

Platt在论文中指出优化的两个问题:训练集的选择和避免过拟合的方法。

Platt Scaling的方法相当于创建新的训练集(SVM分类器输出Score和标签),基于这些新的数据进行训练,训练模型的输出就是分类器的概率输出。

相关参考:

Platt scaling

Classifier calibration with Platt's scaling and isotonic regression

Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods 1999

SVM的概率输出(Platt scaling)的更多相关文章

  1. 概率p输出1,概率1-p输出0,等概率输出0和1

    有个输出0和1的BIASED RANDOM,它以概率p输出1,以概率1-p输出0,以此RANDOM函数为基础,生成另一个RANDOM函数,该函数以1/2的概率输出1,以1/2的概率输出0 题目解答: ...

  2. 从0到n-1中随机等概率输出m个不同的数

    //假设输入的n远大于m void knuth(int n, int m) { for (int i = 0; i < n; i++) { if (rand() % (n - i)<m) ...

  3. 【机器学习具体解释】SVM解二分类,多分类,及后验概率输出

    转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台 支持向量机(Support Vecto ...

  4. 支持向量机SVM 参数选择

    http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况 ...

  5. paper 130:MatLab分类器大全(svm,knn,随机森林等)

    train_data是训练特征数据, train_label是分类标签.Predict_label是预测的标签.MatLab训练数据, 得到语义标签向量 Scores(概率输出).1.逻辑回归(多项式 ...

  6. 项目二:使用机器学习(SVM)进行基因预测

    SVM软件包 LIBSVM -- A Library for Support Vector Machines(本项目所用到的SVM包)(目前最新版:libsvm-3.21,2016年7月8日) C-S ...

  7. SVM、LR、决策树的对比

    一.LR LR,DT,SVM都有自身的特性,首先来看一下LR,工业界最受青睐的机器学习算法,训练.预测的高效性能以及算法容易实现使其能轻松适应工业界的需求.LR还有个非常方便实用的额外功能就是它并不会 ...

  8. matlab 基于 libsvm工具箱的svm分类遇到的问题与解决

    最近在做基于无线感知的身份识别这个工作,在后期数据处理阶段,需要使用二分类的方法进行训练模型.本身使用matlab做,所以看了一下网上很多都是使用libsvm这个工具箱,就去下载了,既然用到了想着就把 ...

  9. MatLab2012b/MatLab2013b 分类器大全(svm,knn,随机森林等)

    train_data是训练特征数据, train_label是分类标签.Predict_label是预测的标签.MatLab训练数据, 得到语义标签向量 Scores(概率输出). 1.逻辑回归(多项 ...

随机推荐

  1. C++的面向对象的Dijkstra写法

    C++的面向对象的Dijkstra写法 面向对象特点的充分使用 清晰的逻辑 简洁的图输入 程序 面向对象特点的充分使用 清晰明确的类实现 class Edge(边的实现) class Req (路由请 ...

  2. What is the difference between XSS and CSRF from their execution perspective?

    What is the difference between XSS and CSRF from their execution perspective? https://www.quora.com/ ...

  3. OpenJudge计算概论-分离整数的各个数位

    /*================================================================= 分离整数的各个数位 总时间限制: 1000ms 内存限制: 65 ...

  4. app 爬虫

    https://mp.weixin.qq.com/s/ClYYfpvylQGlYYHDFBuKpA 唯品会舆情监控系统 姚彬炎 唯技术 2月26日  

  5. React 高阶组件浅析

    高阶组件的这种写法的诞生来自于社区的实践,目的是解决一些交叉问题(Cross-Cutting Concerns).而最早时候 React 官方给出的解决方案是使用 mixin .而 React 也在官 ...

  6. python笔记9 线程进程 threading多线程模块 GIL锁 multiprocessing多进程模块 同步锁Lock 队列queue IO模型

    线程与进程 进程 进程就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成.我们编写的程序用来描述进程要完成哪些功能以及如何完成:数据集则是程序在执行过程中所需要 ...

  7. keras多层感知机MLP

    肯定有人要说什么多层感知机,不就是几个隐藏层连接在一起的吗.话是这么说,但是我觉得我们首先要自己承认自己高级,不然怎么去说服(hu nong)别人呢 from keras.models import ...

  8. 浅谈Mysql共享锁、排他锁、悲观锁、乐观锁及其使用场景

    浅谈Mysql共享锁.排他锁.悲观锁.乐观锁及其使用场景   Mysql共享锁.排他锁.悲观锁.乐观锁及其使用场景 一.相关名词 |--表级锁(锁定整个表) |--页级锁(锁定一页) |--行级锁(锁 ...

  9. Facebook libra开发者文档- 3 -Life of a Transaction交易生命周期

    Life of a Transaction交易的生命周期 https://developers.libra.org/docs/life-of-a-transaction 为了更深入地了解Libra交易 ...

  10. 阶段5 3.微服务项目【学成在线】_day18 用户授权_11-前端集成认证授权-身份校验

    把下面赋值到nginx中 前端的服务需要配置一下 重启nginx 启动教学管理的前端 没有登陆直接就进来教学管理的后端了 下面我们要做的就是这两件事 1.前端页面校验用户的身份,如果用户没有登录则跳转 ...