SPFA的优化
【为什么要优化】
关于SPFA,他死了(懂的都懂)
进入正题。。。
一般来说,我们有三种优化方法。
SLF优化:
SLF优化,即 Small Label First 策略,使用 双端队列 进行优化。
一般可以优化15%~20%,在竞赛中比较常用。
设从 u 扩展出了 v ,队列中队首元素为 k ,若 dis[ v ] < dis[ k ] ,则将 v 插入队首,否则插入队尾。
注:队列为空时直接插入队尾。
deque<int> q; inline void spfa(int x)
{
memset(d,0x3f,sizeof(d));
memset(v,,sizeof(v));
d[x]=;v[x]=;
q.push_back(x);
while(q.size())
{
int index=q.front();q.pop_front();
v[index]=;
for(int i=head[index];i;i=g[i].next){
int y=g[i].ver,z=g[i].edge;
if(d[y]>d[index]+z){
d[y]=d[index]+z;
if(!v[y]){
if(!q.empty()&&d[y]>=d[q.front()]) q.push_back(y);
else q.push_front(y);
v[y]=;
}
}
}
}
}
LLL优化:
LLL优化,即 Large Label Last 策略,使用 双端队列 进行优化。
一般用SLF+LLL可以优化50%左右,但是在竞赛中并不常用LLL优化。(所以我就懒得写了,这是从这个大佬那里嫖来的)
设队首元素为 k ,每次松弛时进行判断,队列中所有 dis 值的平均值为 x 。
若 dist[ k ] > x ,则将 k 插入到队尾,查找下一元素,直到找到某一个 k 使得 dis[ k ] <= x ,则将 k 出队进行松弛操作。
void spfa(){
int u,v,num=;
long long x=;
list<int> q;
for(int i=;i<=n;i++){path[i]=MAX;vis[i]=false;}
path[s]=;
vis[s]=true;
q.push_back(s);
num++;
while(!q.empty()){
u=q.front();
q.pop_front();
num--;x-=path[u];
while(num&&path[u]>x/num){
q.push_back(u);
u=q.front();
q.pop_front();
}
vis[u]=false;
for(int i=head[u];i;i=a[i].next){
v=a[i].to;
if(relax(u,v,a[i].w)&&!vis[v]){
vis[v]=true;
if(!q.empty()&&path[v]<path[q.front()])q.push_front(v);
else q.push_back(v);
num++;x+=path[v];
}
}
}
for(int i=;i<=n;i++)printf("%d ",path[i]);
printf("\n");
}
DFS优化:
这种优化顾名思义,就是用dfs的思想代替bfs的思想来优化Bellman-Ford。
常常用于判断正/负环,时间复杂度可以达到O(m)(m是边)。思路是,我们每一次dfs的时候如果走回之前dfs过的点,那就是有环,除了这个dfs的标记,我们还可以打另一个vis数组记录更新过权值的节点,以后就不必重复更新,大大降低复杂度。
不过如果无环的话,那还是上面那两种优化稍微适用一点。代码比较短,但是不好扩展。
inline bool spfa(int x)
{
dfs[x]=;
for(int i=head[x];i;i=g[i].next)
{
int y=g[i].ver,z=g[i].edge;
if(!v[y]||d[y]<d[x]+z){
if(dfs[y]) return ;
v[y]=;
d[y]=d[x]+z;
if(!spfa(y)) return ;
}
}
dfs[x]=;
return ;
}
SPFA的优化的更多相关文章
- SPFA 小优化*2
/* bzoj 2763 SPFA小优化 循环队列+SLF 顺面改掉自己之前手打qeueu的坏毛病*/ #include<iostream> #include<cstring> ...
- HDU 1535 Invitation Cards(SPFA,及其优化)
题意: 有编号1-P的站点, 有Q条公交车路线,公交车路线只从一个起点站直接到达终点站,是单向的,每条路线有它自己的车费. 有P个人早上从1出发,他们要到达每一个公交站点, 然后到了晚上再返回点1. ...
- [BZOJ 2200][Usaco2011 Jan]道路和航线 spfa+SLF优化
Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...
- 【最短路径】 SPFA算法优化
首先先明确一个问题,SPFA是什么?(不会看什么看,一边学去,传送门),SPFA是bellman-ford的队列优化版本,只有在国内才流行SPFA这个名字,大多数人就只知道SPFA就是一个顶尖的高效算 ...
- SPFA队列优化
spfa队列优化(用来求最短路) 实现方法: 1.存入图.可以使用链式前向星或者vocter. 2.开一个队列,先将开始的节点放入. 3.每次从队列中取出一个节点X,遍历与X相通的Y节点,查询比对 ...
- spfa + slf优化
最近在练习费用流 , 不是要用spfa吗 ,我们教练说:ns学生写朴素的spfa说出去都让人笑 . QwQ,所以就去学了一下优化 . slf优化就是双向队列优化一下,本来想用lll优化,可是优化后我t ...
- 最短路--spfa+队列优化模板
spfa普通版就不写了,优化还是要的昂,spfa是可以判负环,接受负权边和重边的,判断负环只需要另开一个数组记录每个结点的入队次数,当有任意一个结点入队大于点数就表明有负环存在 #include< ...
- CDOJ 1287 MC挖矿世界(Spfa+set优化)
题目大意:原题链接 解题思路:此题要求多点最短距离,但是直接套用floyd会超时. 然后我们想直接从每一个点开始bfs就好了,但是还是会TLE,为什么呢? 因为你访问了很多次没有意义的地方,因为有些点 ...
- 初识费用流 模板(spfa+slf优化) 餐巾计划问题
今天学习了最小费用最大流,是网络流算法之一.可以对于一个每条边有一个容量和一个费用(即每单位流的消耗)的图指定一个源点和汇点,求在从源点到汇点的流量最大的前提下的最小费用. 这里讲一种最基础也是最好掌 ...
- Gym - 100570B :ShortestPath Query(SPFA及其优化)
题意:给定N点M边的有向图,每条边有距离和颜色,一条有效路径上不能有相邻的边颜色相同.现在给定起点S,多次讯问S到点X的最短有效距离. TLE思路:用二维状态dis(u,c)表示起点到u,最后一条边的 ...
随机推荐
- js类似新闻图片轮换(带有文字介绍,其实可以放任何内容)
js类似新闻图片轮换(带有文字介绍,其实可以放任何内容) 主要是利用style="display:block;" 属性<script language="javas ...
- SrpingBoot入门到入坟03-基于idea快速创建SpringBoot应用
先前先创建Maven项目然后依照官方文档再然后编写主程序写业务逻辑代码才建立好SpringBoot项目,这样太过麻烦,IDE都支持快速创建,下面基于idea: 使用Spring Initializer ...
- Thinking In Java 4th Chap7 复用类
复用代码的两种方法:组合和继承 组合方法:(新类中产生现有类的对象) 没什么好说的,就是调用别类的对象而已 值得一提的是一个特殊方法:toString()当需要一个String却只有对象时能够自动调用 ...
- STM32与ARM代码执行过程
内存分配 1.ARM(JZ2440) 启动方式: 1)nor启动 注:1.bootloader烧在norflash的0地址 2.将bootloader从norflash中复制到SDRAM中的链接地址( ...
- Python使用datetime来判断近七天
目录 strptime 使用strptime来格式化字符串 datetime.datetime.strptime("2019-10-02", "%Y-%m-%d" ...
- 数据库SQL语句大全——最常用的SQL语句
检索数据: 检索单个列: SELECT pname FROM product 检索多个列: SELECT pname,market_price,is_hot FROM product 检索所有列: S ...
- 使用RabbitMQ实现分布式事务
RabbitMQ解决分布式事务思路: 案例: 经典案例,以目前流行点外卖的案例,用户下单后,调用订单服务,让后订单服务调用派单系统通知送外卖人员送单,这时候订单系统与派单系统采用MQ异步通讯. Rab ...
- Optional 理解
目录 Optional 理解 1. 含义 2. Optional 类中方法 3. Optional 对象不应该作为方法参数 Optional 理解 1. 含义 Optional 是一个容器对象,该容器 ...
- (六)mybatis之多对一关系(简单)
一.需求分析 需求: 查询所有订单信息及订单下的订单明细信息 分析: 一条订单只能由一个消费者下单,但是一条订单有多条订单明细. 二.创建数据库表和实体对象 Customer.java ...
- Java单例设计模式和多例设计模式
单例设计模型 教学视频链接:https://edu.aliyun.com/course/1011 1,private不可以在类外部访问,但可以在内部访问 2,此时Singleton类内部的instan ...