MapReduce的多输入、多mapper

虽然一个MapReduce作业的输入可能包含多个输入文件(由文件glob、过滤器和路径组成),但所有文件都由同一个InputFormat和同一个Mapper来解释。然而,数据格式往往会随时间而演变,所以必须写自己的mapper来处理应用中的遗留数据格式问题。或者,有些数据源会提供相同的数据,但是格式不同。
这些问题可以用MultipleInputs类来妥善处理,它允许为每条输入路径指定InputFormat和Mapper。

代码如下

package com.zhen.mapreduce.multipleInput;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; /**
* @author FengZhen
* @date 2018年8月25日
* 多输入、多mapper
*/
public class MultipleInputsTest extends Configured implements Tool{ /**
* 根据 ` 分隔字符串
* @author FengZhen
*
*/
static class SplitMapper1 extends Mapper<LongWritable, Text, Text, IntWritable>{
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
String[] values = value.toString().split("`");
for (String string : values) {
context.write(new Text(string), new IntWritable(1));
}
}
} /**
* 根据 , 分隔字符串
* @author FengZhen
*
*/
static class SplitMapper2 extends Mapper<LongWritable, Text, Text, IntWritable>{
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
String[] values = value.toString().split(",");
for (String string : values) {
context.write(new Text(string), new IntWritable(1));
}
}
} /**
* 同一个reduce
* @author FengZhen
*
*/
static class SplitReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> value,
Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable intWritable : value) {
sum += intWritable.get();
}
context.write(key, new IntWritable(sum));
}
} public int run(String[] args) throws Exception { Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration);
job.setJobName("MultipleInputs");
job.setJarByClass(MultipleInputsTest.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setReducerClass(SplitReducer.class); //设置多输入、多mapper
MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class, SplitMapper1.class);
MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class, SplitMapper2.class); job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path(args[2])); return job.waitForCompletion(true) ? 0 : 1;
} public static void main(String[] args) {
try {
String[] params = {"hdfs://fz/user/hdfs/MapReduce/data/multipleInputs/test1","hdfs://fz/user/hdfs/MapReduce/data/multipleInputs/test2", "hdfs://fz/user/hdfs/MapReduce/data/multipleInputs/output"};
int exitCode = ToolRunner.run(new MultipleInputsTest(), params);
System.exit(exitCode);
} catch (Exception e) {
e.printStackTrace();
}
} }

  

MapReduce-多个Mapper的更多相关文章

  1. [Hadoop源码解读](二)MapReduce篇之Mapper类

    前面在讲InputFormat的时候,讲到了Mapper类是如何利用RecordReader来读取InputSplit中的K-V对的. 这一篇里,开始对Mapper.class的子类进行解读. 先回忆 ...

  2. mapreduce中控制mapper的数量

    很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的 ...

  3. mapreduce 只使用Mapper往多个hbase表中写数据

    只使用Mapper不使用reduce会大大减少mapreduce程序的运行时间. 有时候程序会往多张hbase表写数据. 所以有如题的需求. 下面给出的代码,不是可以运行的代码,只是展示driver中 ...

  4. MapReduce之Mapper类,Reducer类中的函数(转载)

    Mapper类4个函数的解析 Mapper有setup(),map(),cleanup()和run()四个方法.其中setup()一般是用来进行一些map()前的准备工作,map()则一般承担主要的处 ...

  5. Hadoop(十七)之MapReduce作业配置与Mapper和Reducer类

    前言 前面一篇博文写的是Combiner优化MapReduce执行,也就是使用Combiner在map端执行减少reduce端的计算量. 一.作业的默认配置 MapReduce程序的默认配置 1)概述 ...

  6. [Hadoop in Action] 第5章 高阶MapReduce

    链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter   1.链接MapReduce作业   [顺序链接MapReduce作业]   mapreduce-1 | mapr ...

  7. Kettle实现MapReduce之WordCount

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 欢迎转载 抽空用kettle配置了一个Mapreduce的Word count,发现还是很方便快捷的,废话不多说 ...

  8. MapReduce基础知识

    hadoop版本:1.1.2 一.Mapper类的结构 Mapper类是Job.setInputFormatClass()方法的默认值,Mapper类将输入的键值对原封不动地输出. org.apach ...

  9. mapreduce job提交流程源码级分析(一)(原创)

    首先,在自己写的MR程序中通过org.apache.hadoop.mapreduce.Job来创建Job.配置好之后通过waitForCompletion方法来提交Job并打印MR执行过程的log.H ...

  10. Hadoop实战2:MapReduce编程-WordCount实例-streaming-python环境

    这是搭建hadoop环境后的第一个MapReduce程序: 基于hadoop streaming的python的脚本: 1 map.py文件,把文本的内容划分成单词: #!/usr/bin/pytho ...

随机推荐

  1. Python 邮箱

    #coding:utf-8from email.header import Headerfrom email.mime.text import MIMETextfrom email.utils imp ...

  2. "无法加载 DLL“oramts.dll”: 找不到指定的模块。 (异常来自 HRESULT:0x8007007E)。" —— 的解决方法

       Oramts.dll 文件公开登记 Oracle 连接所涉及到在通过 Microsoft 分布式事务处理协调器 (MSDTC) 启动的事务中的公共 API. 在事务处理环境中运行时, Syste ...

  3. SVG 与 Canvas:如何选择

    SVG 与 Canvas:如何选择 61(共 69)对本文的评价是有帮助 - 评价此主题   本主题一开始将对 SVG 与 Canvas 进行简要比较,接下来会讨论大量的比较代码示例,如光线跟踪和绿屏 ...

  4. 关于vue,angularjs1,react之间的对比

    1.时间投入的问题:相对于react和angularjs,学习vue的时间成本低,而且容易上手. 2.JSX的可读性比较一般.代码的可读性不如vue,当然,vue也支持jsx,但是vue更提倡temp ...

  5. HTML+CSS实现简单三级菜单

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. Xamarin.Forms学习之XAML命名空间

    大家好,我又悄咪咪的来了,在上一篇的Xamarin文章中简单介绍了Xamarin的安装过程,妈蛋没想到很多小朋友很感激我,让他们成功的安装了Xamarin,然后......成功的显示了经典的两个单词( ...

  7. 2018.10.24-day3 python总结

    昨日回顾:1.while2.运算符3.初始编码4.补充p2和p3的区别 Python2 (1) 今日学习目录1.整型 int() 2.布尔值 bool() 3.字符串详解 4. for循环

  8. junit5荟萃知识点(一):junit5的组成及安装

    1.什么是junit5? 和之前的junit版本不一样,junit5是由三个模块组成. JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit Vintage ...

  9. Quartz实现定时功能

    ---------------------------------博主讲废话 在自己实现爬取某个网站的信息后,发现,如果要自己每次把程序跑一遍不太现实(麻烦),所以有没有什么可以实现 定时的功能,只要 ...

  10. 在ie和chrome浏览器中滚动条样式的设置

    1.IE下设置滚动条样式的属性 scrollbar-arrow-color: color; /*三角箭头的颜色*/scrollbar-face-color: color; /*立体滚动条的颜色(包括箭 ...