【luogu P1816 忠诚】 题解
题目链接:https://www.luogu.org/problemnew/show/P1816
用st表来解决rmq问题。
表示同时培训学的st表,然后我就忘得差不多了,在这里推荐一篇blog
自己再转载一篇
ST表学习
作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例
举例:
给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1。
方法:ST算法分成两部分:离线预处理 (nlogn)和 在线查询(O(1))。虽然还可以使用线段树、树状链表等求解区间最值,但是ST算法要比它们更快,而且适用于在线查询。
(1)离线预处理:运用DP思想,用于求解区间最值,并保存到一个二维数组中。
(2)在线查询:对给定区间进行分割,借助该二维数组求最值
具体解释:
(1)离线预处理:
ST算法使用DP思想求解区间最值,貌似属于区间动态规划,不过区间在增加时,每次并不是增加一个长度,而是使用倍增的思想,每次增加2^i个长度。
使用F[i,j]表示以i为起点,区间长度为2^j的区间最值,此时区间为[i,i + 2^j - 1]。
比如,F[0,2]表示区间[0,3]的最小值,即等于4,F[2,2]表示区间[2,5]的最小值,即等于1。
在求解F[i,j]时,ST算法是先对长度为2^j的区间[i,i + 2^j - 1]分成两等份,每份长度均为2^(j - 1)。之后在分别求解这两个区间的最值F[i,j - 1]和F[i + 2^(j - 1),j - 1]。,最后在结合这两个区间的最值,求出整个区间的最值。特殊情况,当j = 0时,区间长度等于1,即区间中只有一个元素,此时F[i,0]应等于每一个元素的值。
举例:要求解F[1,2]的值,即求解区间[1,4] = {4,6,10,1}的最小值,此时需要把这个区间分成两个等长的区间,即为[1,2]和[3,4],之后分别求解这两个区间的最小值。此时这两个区间最小值分别对应着F[1,1] 和 F[3,1]的值。
状态转移方程是 F[i,j] = min(F[i,j - 1],F[i + 2^(j - 1),j - 1])
初始状态为:F[i,0] = A[i]。
在根据状态转移方程递推时,是对每一元素,先求区间长度为1的区间最值,之后再求区间长度为2的区间最值,之后再求区间长度为4的区间最值….,最后,对每一个元素,在求解区间长度为log2^n的区间最值后,算法结束,其中n表示元素个数。
即:先求F[0][1],F[1][1],F[2][1],F[3][1],,,F[n][1],再求.F[0][2],F[1][2],F[2][2],F[3][2],,,F[m][2],… 。
(2)在线处理:这里我们是已知待查询的区间[x,y],求解其最值。
在预处理期间,每一个状态对应的区间长度都为2^i。由于给出的待查询区间长度不一定恰好为2^i,因此我们应对待查询的区间进行处理。
这里我们把待查询的区间分成两个小区间,这两个小区间满足两个条件:(1)这两个小区间要能覆盖整个区间(2)为了利用预处理的结果,要求小区间长度相等且都为2^i。注意两个小区间可能重叠。
如:待查询的区间为[3,11],先尽量等分两个区间,则先设置为[3,7]和[8,11]。之后再扩大这两个区间,让其长度都等于为2^i。刚划分的两个区间长度分别为5和4,之后继续增加区间长度,直到其成为2^i。此时满足两个条件的最小区间长度为8,此时i = 3。
在程序计算求解区间长度时,并没有那么麻烦,我们可以直接得到i,即等于直接对区间长度取以2为底的对数。这里,对于区间[3,11],其分解的区间长度为int(log(11 - 3 + 1)) = 3,这里log是以2为底的。
根据上述思想,可以把待查询区间[x,y]分成两个小区间[x,x + 2^i - 1] 和 [y - 2^i + 1,y] ,其又分别对应着F[x,i]和F[y - 2^i + 1,i],此时为了求解整个区间的最小值,我们只需求这两个值得最小值即可,此时复杂度是O(1)。
转载(http://blog.csdn.net/insistgogo/article/details/9929103)
#include <cstdio>
#include <algorithm>
using namespace std;
int const maxn = ;
int st[maxn][], a[maxn], ans[maxn];
int n, m, left, right, j, i;
int main()
{
scanf("%d%d", &n, &m);
for(i = ; i <= n; i++)
{
scanf("%d", &a[i]);
st[i][] = a[i];
} for(j = ; (<<j) <= n; j++)
for(i = ; i <= n-(<<j) + ; i++)
st[i][j] = min(st[i][j-] , st[i+( <<(j-) )][j-]); for(i = ; i <= m; i++)
{
scanf("%d%d", &left, &right);
j = ;
while((<<(j+)) <= (right-left+)) j++;
ans[i] = min(st[left][j],st[right-(<<j)+][j]);
} for(i = ; i <= m; i++)
printf("%d ",ans[i]);
return ;
}
【luogu P1816 忠诚】 题解的更多相关文章
- 洛谷P1816 忠诚 题解
洛谷P1816 忠诚 题解 题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意.但是由于一些人 ...
- 洛谷 P1816 忠诚 题解
P1816 忠诚 题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意.但是由于一些人的挑拨,财 ...
- 洛谷 P1816 忠诚题解
题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意.但是由于一些人的挑拨,财主还是对管家产生了 ...
- Luogu P1816 忠诚
rmq模板题.用st表切一个. 关于st表的详解见我的博客:st表.树状数组与线段树 笔记与思路整理 题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家 ...
- 洛谷P1816 忠诚
P1816 忠诚 569通过 1.5K提交 题目提供者该用户不存在 标签云端 难度普及+/提高 时空限制1s / 128MB 提交 讨论 题解 最新讨论更多讨论 主席树的常数貌似大于线段树… TL ...
- 【模板】ST表 洛谷P1816 忠诚
P1816 忠诚 题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于 管家聪明能干,因而管家总是让财主十分满意.但是由于一些人的挑拨, ...
- luogu P1816 【忠诚】
话说许多dalao都采取线段树A题可本蒟蒻不会啊, 暴力的我想出了暴力解法(快排) #include<cstdio> #include<algorithm> using nam ...
- P1816 忠诚
题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意.但是由于一些人的挑拨,财主还是对管家产生了 ...
- P1816 忠诚 倍增
链接:https://www.luogu.org/problem/show?pid=1816 题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k ...
随机推荐
- npm是什么NPM的全称是Node Package Manager
npm是什么NPM的全称是Node Package Manager
- Maven工程红色感叹号,且工程无红叉错误
很可能是jar包不对,可以将maven库里的jar包删除,从 http://mvnrepository.com/ 根据jar包版本号下载到本地maven库,并在pom.xml里引入jar依赖 这次ja ...
- Java学习第十七天
1:登录注册案例(理解) 2:Set集合(理解) (1)Set集合的特点 无序,唯一 (2)HashSet集合(掌握) A:底层数据结构是哈希表(是一个元素为链表的数组) B:哈希表底层依赖两个方法: ...
- 操作系统管理CPU的直观想法
CPU的工作原理 要想管理CPU,就要先学会如何使用CPU.我们先从一个程序的执行来看看CPU是如何工作的. void main(){ int i , sum; ; i < ; i++){ su ...
- 自己用jquery+css+div写的一个弹窗
弹窗支持两种模式,一种是普通信息提示框,调用方法:popup.msgPopup(msg); 另一种是可以加载页面的弹窗,调用方法:popup.pagePopup(url); 效果图: css代码 ;; ...
- 项目管理系统 TAIGA 部署
题记 使用了 MantisBT 一段时间,觉得功能太少,只局限在错误跟踪,而且操作体验比较差,界面很糟糕,很早就想将其换掉. 偶然发现一个很不错的新选择:Taiga,于是就试着将其部署下来,发现绝对是 ...
- ATL模板库中的OLEDB与ADO
上次将OLEDB的所有内容基本上都说完了,从之前的示例上来看OLEDB中有许多变量的定义,什么结果集对象.session对象.命令对象,还有各种缓冲等等,总体上来说直接使用OLEDB写程序很麻烦,用很 ...
- The eighteen day
27th Nov 2018 Setting goals is the first step in turning the invisible into the visiable ---Tony R ...
- axios 发 post 请求,后端接收不到参数的解决方案
问题场景 场景很简单,就是一个正常 axios post 请求: axios({ headers: { 'deviceCode': 'A95ZEF1-47B5-AC90BF3' }, method: ...
- html中通过移除空格的方法来解决浏览器上的留白间距该怎么理解?
今天在切图的时候,碰到一个兼容性的问题,很幸运最后通过张金鑫老师的文章解决了这个问题!但在阅读张老师文章的时候,我有个地方不明白,在网上查了下也没找到我想要的答案,后来自己想了半天好像是这么回事,现在 ...