MMAI 2015 FINAL PROJECT

 
To Know Where We Are: Positioning-based Photo Retrieval
 
2015/12/16 Update
To Know Where We Are: Positioning-based Photo Retrieval
Input: query photo
Return: other photos taken in the same position with different direction.
Method: use training photos collected from Internet or somewhere else to bulit a 3D model, perform 2D-3D matching when the query photo comes. As a result we get the position where the query photo was taken, then we use the position to final all photos taken in the same position or those was taken very close to this position ------- A new concept of image retrieval.
Topic 1    Photo Tourism In Campus (existing)
Use an amout of photos to built a campus model in 3D, and enable the guest to interactively move about the 3D space by seamlessly transitioning between photographs.

Method: 
Snavely, et al. "Photo tourism: exploring photo collections in 3D." ACM transactions on
graphics, 2006.
Topic 2    Best Shooting Point Seeking
Use an extension of the above work to find the best position to take a photo in a scene. This could be achieved by finding the viewpoints-densest area in the 3D model.
Topic 3    Photo-based Positioning
An extension of the above work. By using our own photo to quey the 3D model in a feature-based method, we could find where we are as well as get the photos taken near our current position.
Method:
Sattler, et al. "Fast image-based localization using direct 2D-to-3D matching." ICCV 2011.
Topic 4 CBIR System based on pretrained model feature extraction
After HW2, I have tried features extracted by pretrained model of GoogleNet. It turned out that such features was effective and thus led to more than 80% presicion(MAP) on our database. 
 

Positioning-Based Photo Retrieval的更多相关文章

  1. 基于内容的图片检索CBIR(Content Based Image Retrieval)简介

    传统的图像检索过程,先通过人工对图像进行文字标注,再利用关键字来检索图像,这种依据图像描述的字符匹配程度提供检索结果的方法,简称“以字找图”,既耗时又主观多义.基于内容的图像检索客服“以字找图”方式的 ...

  2. Bag of word based image retrieval

    主要参考维基百科Bag of Word 在DLP领域里,bow(bag of word)是一个稀疏的向量,向量的每个元素记录词的出现次数,相当于对每篇文章都关于词典做词的直方图统计.同样的道理用在co ...

  3. 第十讲_图像检索 Image Retrieval

    第十讲_图像检索 Image Retrieval 刚要 主要是图像预处理和特征提取+相似度计算 相似颜色检索 算法结构 颜色特征提取:统计图片的颜色成分 颜色特征相似度计算 色差距离 发展:欧式距离- ...

  4. 【Paper Reading】Deep Supervised Hashing for fast Image Retrieval

    what has been done: This paper proposed a novel Deep Supervised Hashing method to learn a compact si ...

  5. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  6. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

  7. A simple test

        博士生课程报告       视觉信息检索技术                 博 士 生:施 智 平 指导老师:史忠植 研究员       中国科学院计算技术研究所   2005年1月   目 ...

  8. Needle in a haystack: efficient storage of billions of photos 【转】

    转自09年的blog,因为facebook在国内无法访问,故此摘录. The Photos application is one of Facebook’s most popular features ...

  9. (转) Awesome Deep Learning

    Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutori ...

随机推荐

  1. centos7 中文乱码问题解决方法

    1.查看是否安装中文包 可以使用下面的命名查看系统是否安装了中文安装包. locale -a |grep "zh_CN" 没有输出,说明没有安装,输入下面的命令安装: yum gr ...

  2. opensuse install oracle 11gR2 Error in invoking target 'agent nmhs' of makefile '../ins_emagent.mk'

    转自 http://blog.csdn.net/ly5156/article/details/6647563 遭遇Error in invoking target 'agent nmhs' of ma ...

  3. cmd激活win10

    自己动手,KMS激活win10 2016 长期服务版.步骤如下:命令提示符(管理员),依次输入以下3条命令 slmgr /ipk DCPHK-NFMTC-H88MJ-PFHPY-QJ4BJslmgr ...

  4. 浅谈辄止WCF:完成最基本的WCF项目(1)

    Windows Communication Foundation(WCF)是由微软开发的一系列支持数据通信的应用程序框架,可以翻译为Windows 通讯开发平台. WCF的所有服务都会公开契约.契约包 ...

  5. 生成正射影像/DSM,等高线提取

    工具:ContextCapture,Globe Mapper 方法/步骤: 1.新建项目,导入影像,提交空三运算 在ContextCapture中新建项目,添加相关影像或视频和其他相关资源,资源,提交 ...

  6. 基于RBAC模式的权限管理系统设计概要

    很多人都知道以角色为基础的权限管理设计(RBAC),但是大部分人似懂非懂,不知道完整的权限管理系统都包括哪些内容.  在此以权限管理的使用场景来说明一下完整的权限管理内容.     一是鉴权管理,即权 ...

  7. ArrayList  集合

    ArrayList       集合:很多数据的一个集合       数组:长度不可变.类型单一 集合的好处:长度可以任意改变  类型随便 集合长度都的问题   很多数据的集合数组类型不可变 长度单一 ...

  8. asp.net之cookie

    1.创建cookie HttpCookie userCookie = new HttpCookie("userInfo"); userCookie["name" ...

  9. Thrift笔记(一)--Hello Demo

    Thrift是一个RPC框架 1. 用IDL定义好实体和服务框架,如实体字段名,类型等.服务名,服务参数,返回值等 2. 通过编译器或者说代码生成器生成RPC框架代码 IDL语法,代码生成器的安装使用 ...

  10. ubuntu 14.04 64bit 安装 oracle 11g r2

    参考文章:http://tutorialforlinux.com/2016/03/09/how-to-install-oracle-11g-r2-database-on-ubuntu-14-04-tr ...