【[SCOI2010]生成字符串】
\(n=m\)时候经典的卡特兰
那\(n!=m\)呢,还是按照卡特兰的方式来推
首先总情况数就是\(\binom{n+m}{n}\),在\(n+m\)个里选择\(n\)个\(1\)
显然有不合法的情况,减掉它们
对于一种不合法的情况,必然存在一个前缀\(0\)的个数比\(1\)多\(1\)
我们考虑构造出一个由\(n+1\)个\(1\)和\(m-1\)个\(0\)组成的序列,其必然存在一个前缀使得\(1\)的个数比\(0\)多\(1\)
于是就能一一对应了
也可以这样理解,对于每一个不合法的情况,找到第一个不合法的前缀,将其取反,之后就会得到一个\(n+1\)个\(1\)和\(m-1\)个\(0\)组成的字符串,还是可以一一对应
答案就是\(\binom{n+m}{n}-\binom{n+m}{n+1}\)
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
#define re register
#define maxn 1000005
const LL mod=20100403;
LL n,m,fac[maxn*2];
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) return x=1,y=0,a;
LL r=exgcd(b,a%b,y,x);
y-=a/b*x;
return r;
}
inline LL inv(LL a)
{
LL x,y;
LL r=exgcd(a,mod,x,y);
return (x%mod+mod)%mod;
}
inline LL C(LL n,LL m)
{
if(m>n) return 0;
return (fac[n])*inv(fac[m]*fac[n-m]%mod)%mod;
}
int main()
{
n=read(),m=read();
fac[0]=1;
for(re int i=1;i<=n+m;i++) fac[i]=(fac[i-1]*i)%mod;
printf("%lld\n",(C(n+m,n)-C(n+m,n+1)+mod)%mod);
return 0;
}
【[SCOI2010]生成字符串】的更多相关文章
- [SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...
- P1641 [SCOI2010]生成字符串
P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...
- [SCOI2010]生成字符串
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...
- BZOJ1856 [SCOI2010]生成字符串 【组合数】
题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...
- 卡特兰数 洛谷P1641 [SCOI2010]生成字符串
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...
- BZOJ1856或洛谷1641 [SCOI2010]生成字符串
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...
- Luogu 1641[SCOI2010]生成字符串 - 卡特兰数
Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...
- 洛谷 1641 [SCOI2010]生成字符串
题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为 ...
- luogu P1641 [SCOI2010]生成字符串
传送门 代码极短 \(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1 ...
随机推荐
- Rsa2加密报错java.security.spec.InvalidKeySpecException的解决办法
最近在和支付宝支付做个对接,Java项目中用到了RSA2进行加解密,在加密过程中遇到了错误: java.security.spec.InvalidKeySpecException: java.secu ...
- oracle 基础知识(七)----动态性能视图
一,动态性能视图介绍 动态性能视图属于数据字典,系统管理员用户 SYS 可以访问它们.在数据库打开和使用时不断进行更新,而且它们的内容主要与性能有关.虽然这些视图很像普通的数据库表,但它们不允许用户直 ...
- 关于TypeScript中null,undefined的使用
TypeScript本质是javascript,因此基本上js所有的功能在ts上完全可以照搬照抄过来使用.根据ts的文档,有些我觉得值得商榷的——比如null,undefined就是例子. 文档上说一 ...
- Redis启动和关闭
带配置文件启动 ./redis-server redis.conf 关闭 无密码模式 ./redis-cli -h xxx -p xxx shutdown 密码模式 ./redis-cli -h ...
- Windows与Unix思想
Unix与Windows的思想 Unix中的哲学是"一切皆文件",这里的一切皆文件是一个广泛的概念,有一些特殊的设备文件,在/dev目录下 物理设备在Unix中就对应一个特殊的设备 ...
- 两个三汇API使用的坑
最近呼叫中心走火入魔了,我的<一步一步开发呼叫中心>系列编写过程中,遇到各种的问题,今天晚上,来记录一下纠结了我N久的一个问题: 内线通过板卡外呼时,如果对方的呼叫中心需要发送按键响应(如 ...
- js Base64与字符串互转
1.base64加密 在页面中引入base64.js文件,调用方法为: <!DOCTYPE HTML> <html> <head> <meta charset ...
- MarkDown 语言简单使用
# Markdown file ![alt img is error](http://cdn2.jianshu.io/assets/web/logo-58fd04f6f0de908401aa561cd ...
- 操作系统-Interrupts
- zookeeper入门教程
zookeeper使用场景,不是很难了解,感觉zk监听节点变化,这个功能比较厉害.zk存储的节点组织结构有点像unix文件系统 1.安装zk 运行环境 centos 7 java 8 zookeepe ...