题目在这里......

对于这道题,现场我写炸了......谁跟我说组合数O(n)的求是最快的?(~!@#¥¥%……&

#include <cstdio>
#include <algorithm>
using namespace std;

typedef long long ll;
;
;

ll ksm(ll x, ll n) {
    ll ans = 1ll; //printf("%lld ", x);
    while( n) {
        ) ans = ans * x % mod; x = x * x % mod;
        n >>= ;
    }
//    printf("ans = %lld, %lld\n", ans, x);
    return ans;
}
ll zt[N];
ll lucas(int m, int n) {
    ll x = zt[m] * zt[n-m] % mod; //printf("%lld\n", ksm(x, mod-2));
    ) % mod;
}
int data[N], a[N], n, k;
ll query1(int x) {
    , data++n, a[x]) - data;
    , data++n, (a[x] +  >> ) - ) - data - ;
    if( l + n - r < k) return 0ll;
    return lucas(k, l + n - r);
}

ll query2(int x) {
    , data++n, a[x]) - data;
    , data++n, a[x] << ) - data;
    if( l == r) r ++;
    if( r - l > k) return 0ll;
    return lucas(k-r+l, l + n - r);
}

int main() {
    zt[] = zt[] = 1ll;
    ; i <= N-; i ++) zt[i] = zt[i-] * i % mod;
//    for( int i = 1; i <= 10; i ++) printf("%d ", zt[i]); puts("");
    scanf("%d%d", &n, &k);
    ; i <= n; i ++) scanf("%d", a+i), data[i] = a[i];
    sort(data+, data++n);
    ; i <= n; i ++)
        printf("%lld\n", (query1(i) + query2(i)) % mod);
}

我们先复制一份排个序

我们考虑2种情况:

  1:当前节点不变的情况,则大于他的节点和小于他的一半的节点都可以改变(显然),注意一下0,然后我们可以求得可以改变的数的个数t1。

  2:当前节点要改变,那么想要维持他的排名不变,那么大于等于他且小于他的2倍的数都要改变(显然),然后我们可以求得可以改变的数t2。

然后就是求组合数(心态炸了QAQ)......

预处理一下,然后因为mod为质数,所以可以用费马小定理在log的时间内求得逆元......

每次logN的求t1, t2,。logmod的时间求逆元,所以复杂度是O(nlogn+logmod)。

费马小定理 : a^(p-1) % p == 1 (p为质数);

组合数 : 

(当时我脑抽用这个公式每次O(n)的求组合数只有45分QAQ,应该预处理阶乘)


LOJ #6432. 「PKUSC2018」真实排名的更多相关文章

  1. LOJ #6432. 「PKUSC2018」真实排名(组合数)

    题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...

  2. Loj 6432. 「PKUSC2018」真实排名 (组合数)

    题面 Loj 题解 枚举每一个点 分两种情况 翻倍or不翻倍 \(1.\)如果这个点\(i\)翻倍, 要保持排名不变,哪些必须翻倍,哪些可以翻倍? 必须翻倍: \(a[i] \leq a[x] < ...

  3. LOJ 6432 「PKUSC2018」真实排名——水题

    题目:https://loj.ac/problem/6432 如果不选自己,设自己的值是 x ,需要让 “ a<x && 2*a>=x ” 的非 x 的值不被选:如果选自己 ...

  4. Loj#6432「PKUSC2018」真实排名(二分查找+组合数)

    题面 Loj 题解 普通的暴力是直接枚举改或者不改,最后在判断最后对哪些点有贡献. 而这种方法是很难优化的.所以考虑在排序之后线性处理.首先先假设没有重复的元素 struct Node { int p ...

  5. 【LOJ】#6432. 「PKUSC2018」真实排名

    题解 简单分析一下,如果这个选手成绩是0,直接输出\(\binom{n}{k}\) 如果这个选手的成绩没有被翻倍,那么找到大于等于它的数(除了它自己)有a个,翻倍后不大于它的数有b个,那么就从这\(a ...

  6. #6432. 「PKUSC2018」真实排名(组合数学)

    题面 传送门 题解 这数据范围--这输出大小--这模数--太有迷惑性了-- 首先对于\(0\)来说,不管怎么选它们的排名都不会变,这个先特判掉 对于一个\(a_i\)来说,如果它不选,那么所有大于等于 ...

  7. 「PKUSC2018」真实排名(排列组合,数学)

    前言 为什么随机跳题会跳到这种题目啊? Solution 我们发现可以把这个东西分情况讨论: 1.这个点没有加倍 这一段相同的可以看成一个点,然后后面的都可以. 这一段看成一个点,然后前面的不能对他造 ...

  8. 「PKUSC2018」真实排名(组合)

    一道不错的组合数问题! 分两类讨论: 1.\(a_i\) 没有翻倍,那些 \(\geq a_i\) 和 \(a_j\times 2<a_i\) 的数就没有影响了.设 \(kth\) 为 \(a_ ...

  9. 「PKUSC2018」真实排名

    题面 题解 因为操作为将一些数字翻倍, 所以对于一个数\(x\), 能影响它的排名的的只有满足\(2y\geq x\)或\(2x>y\)的\(y\) 将选手的成绩排序,然后考虑当前点的方案 1. ...

随机推荐

  1. rsa 数学推论

    RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它.但是有不少新来的同事对它不太了解,恰好看到一本书中作者用实例对它进行了简化 而生动的描述,使得高深的数学理论能够被容易地理解.我们 ...

  2. Composert 的命令

    (1) php artisan       ----查看所有的命令帮助 (2) php artisan make:controller StudentController      ----创建一个控 ...

  3. 【总结整理】原创概念原创idea---摘自《结网》

    假如你有一个原创想法,搜索引擎是否已有现成产品与自己的想法一致,如果有,研究他可以节省很多摸索的时间:若没有,那就是一个货真价实的原创idea: 第一类:受到现有产品的启发,将既有概念进行了转换. 第 ...

  4. 9-python 的ProxyHandler处理器(代理设置)

    ProxyHandler处理器(代理设置) 使用代理IP,这是爬虫/反爬虫的第二大招,通常也是最好用的. 很多网站会检测某一段时间某个IP的访问次数(通过流量统计,系统日志等),如果访问次数多的不像正 ...

  5. ROS naviagtion analysis: costmap_2d--ObstacleLayer

    博客转载自:https://blog.csdn.net/u013158492/article/details/50493676 构造函数 ObstacleLayer() { costmap_ = NU ...

  6. Hyperledger Fabric Ordering Service过程

    排序服务在超级账本 Fabric 网络中起到十分核心的作用.所有交易在发送给 Committer 进行验证接受之前,需要先经过排序服务进行全局排序. 在目前架构中,排序服务的功能被抽取出来,作为单独的 ...

  7. Servlet和JSP简述

    什么是Servlet和JSP 用Java开发Web应用程序时用到的技术主要有两种,即Servlet和JSP. Servlet是在服务器端执行的Java程序,一个被称为Servlet容器的程序(其实就是 ...

  8. 简单Factory模式

    #pragma once #include "student.h" #include "Teacher.h" typedef enum _EPersonType ...

  9. jquery表单数据反序列化为字典

    .前台代码 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm1 ...

  10. python解释器的下载和安装

    1.python解释器的下载 python这样的语言,需要一个解释器.而且解释器还有多种语言的实现,我们介绍的是最常用的C语言的实现,称之为Cpython.Python通过在各种操作系统上都有各自的解 ...