BZOJ4475 JSOI2015子集选取(动态规划)
数据范围过大说明这个题和组合一点关系也没有,答案基本上肯定是ab的形式了。暴力打表感觉不太好写,找到当年的题面发现还有个样例是6 40 401898087,于是暴力找ab=401898087的数,发现一组a=64 b=40,可以发现a=2n b=k,同时也符合第一组数据,于是就做完了。
可以发现集合中的数字互不影响,对每个数字分别考虑。问题变为在一个全0三角形中填一些1,使得若ai,j=1,则ai-1,j=ai-1,j=1。
容易发现每行为1的一定是一个前缀。设fi,j为第i行有j个1的方案数,则fi,j=Σfi-1,k (j<=k<=i-1),fi,i=1。归纳得fi,j=2i-j-1(i>j)。
那么这个填法的数量是2k,每个数字都有这么多填法,答案即为2nk。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
int n,m;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4475.in","r",stdin);
freopen("bzoj4475.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
cout<<ksm(ksm(,n),m);
return ;
}
BZOJ4475 JSOI2015子集选取(动态规划)的更多相关文章
- BZOJ4475[Jsoi2015]子集选取——递推(结论题)
题目描述 输入 输入包含一行两个整数N和K,1<=N,K<=10^9 输出 一行一个整数,表示不同方案数目模1,000,000,007的值. 样例输入 2 2 样例输出 16 可以发现 ...
- BZOJ4475 [Jsoi2015]子集选取
Description 有一些\(\{1\dots n\}\)的子集\(A_{i,j}, 1\leq j\leq i\leq k\)共\(\frac{k(k+1)}2\)个,满足\(A_{i,j}\s ...
- BZOJ4475: [Jsoi2015]子集选取【找规律】【数学】
Description Input 输入包含一行两个整数N和K,1<=N,K<=10^9 Output 一行一个整数,表示不同方案数目模1,000,000,007的值. Sample In ...
- [BZOJ4475][JSOI2015]子集选取[推导]
题意 题目链接 分析 显然可以看成一个位数为 \(n\) 的二进制数然后每一位分开考虑然后求和.最后的答案是 \(w^n\) 的形式. 考虑一个dp. 定义状态 \(f_{i}\) 表示选择了长度为 ...
- 【BZOJ4475】 [Jsoi2015]子集选取
题目描述 数据范围 \(1\leq N,K \leq 10^9\) \(solution\) 集合S中每个元素互不影响,不妨依次考虑其中一个元素在三角形中的出现情况 问题转化为一个\(0/1\)的三角 ...
- 【BZOJ4475】子集选取(计数)
题意: 思路: #include<cstdio> #include<cstdlib> #include<iostream> #include<algorith ...
- [题解] LuoguP6075 [JSOI2015]子集选取
传送门 ps: 下面\(n\)和\(k\)好像和题目里的写反了...将就着看吧\(qwq\) 暴力打个表答案就出来了? 先写个结论,答案就是\(2^{nk}\). 为啥呢? 首先你需要知道,因为一个集 ...
- bzoj 4475: [Jsoi2015]子集选取
233,扒题解的时候偷瞄到这个题的题解了,,GG 暴力发现是2^(nm),然后就是sb题了 #include <bits/stdc++.h> #define LL long long us ...
- 洛谷 P6075 [JSOI2015]子集选取
链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...
随机推荐
- Co. - VMware - vSphere
VMware vSphere 组件 VMware vSphere是VMware推出的基于云计算的新一代数据中心虚拟化套件,它由VMware ESXi.VMware vCenter Server.VMw ...
- SpringBoot向outlook发送邮件
首先要登陆outlook邮箱,点击设置滑到最下面选择完整设置 进入后选择邮件->同步电子邮件 打开pop如上设置 下面是我的application.propertis设置 请填上自己的邮箱名与密 ...
- 打造自己的JavaScript武器库(转)
作者: SlaneYang https://segmentfault.com/a/1190000011966867 前言 作为战斗在业务一线的前端,要想少加班,就要想办法提高工作效率.这里提一个小点, ...
- 【mysql学习-1】
part-1: #use mysql;/*show tables;select * from user;use mysql;show databases;#create database db1; # ...
- python3 练习题100例 (二十二)输入两个字符串,输出两个字符串集合的并集
题目内容: 输入两个字符串,输出两个字符串集合的并集. 为保证输出结果一致,请将集合内元素排序之后再输出, 如对于集合aset,可输出sorted(aset). 输入格式: 共两行,每一行为一个字符串 ...
- 为什么我要放弃javaScript数据结构与算法(第二章)—— 数组
第二章 数组 几乎所有的编程语言都原生支持数组类型,因为数组是最简单的内存数据结构.JavaScript里也有数组类型,虽然它的第一个版本并没有支持数组.本章将深入学习数组数据结构和它的能力. 为什么 ...
- Verilog 初级入门概念
首先我们要理解两种变量类型 Net Type(连线型)和 Register Type (寄存器型): Net Type(连线型),从名字上理解就是“导线”呗,导线的这头和导线的另一头始终是直接连通的, ...
- 通过py2exe打包python程序的过程中,解决的一系列问题
py2exe的使用方法参考<py2exe使用方法>. 注:程序可以在解释器中正常运行,一切问题都出在打包过程中. 问题1: 现象:RuntimeError: maximum recursi ...
- javascript 自定义发布与订阅
//声明一个类,与普通的类的声明不一样, function Girl() { //将类的事件声明成一个私有的属性,里面是一个对象 this._events = {} } /* { "失恋&q ...
- windows下oracle 11g r2 安装过程与卸载详细图解
Oracle 11g安装 1.解压下载的包,然后进入包内,点击setup.exe开始安装 . 2.出现如下:一般把那个小对勾取消,点击下一步进行, 弹出下图这个后点‘是' 3.下图后,选择创建和配置数 ...