【题解】Bzoj4316小C的独立集
决定要开始学习圆方树 & 仙人掌相关姿势。加油~~
其实感觉仙人掌本质上还是一棵树,长得也还挺优美的。很多的想法都可以往树的方面上靠,再针对仙人掌的特性做出改进。这题首先如果是在树上的话那么实际上就是没有上司的舞会。当出现了环的时候意味着我们需要针对环的存在做出特殊的处理。
还是设立状态 \(f[i][1/0]\) 表示在 \(i\) 的子树内(包括\(i\))时选取 \(i\) 与不选取 \(i\) 的最大独立集大小。当转移发生在树边上的时候,直接转移。当不是树边的时候,我们可以将环上的点单独拿出来重新dp。实际上也就是要处理环上非树边的排斥关系,保证这层关系并转移。其实由于仙人掌上的环不包含,不交叉,很多的时候是类似于一棵基环树的(只不过环变多了?但不影响本质吧)。
判断树边/非树边的依据就是 \(dfn, low\) 等值的大小。而一个环的根与底部也同样可以运用dfs树的性质来解决。
#include <bits/stdc++.h>
using namespace std;
#define maxn 150000
#define INF 99999999
int n, m, cnp = , head[maxn];
int f[maxn][], fa[maxn];
int timer, dfn[maxn], low[maxn]; struct edge
{
int to, last;
}E[maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void add(int u, int v)
{
E[cnp].to = v, E[cnp].last = head[u], head[u] = cnp ++;
E[cnp].to = u, E[cnp].last = head[v], head[v] = cnp ++;
} void DP(int S, int T)
{
int f1 = , f0 = ;
for(int i = T; i != S; i = fa[i])
{
int t1 = f1 + f[i][], t0 = f0 + f[i][];
f0 = max(t1, t0); f1 = t0;
}
f[S][] += f0; f0 = , f1 = -INF;
for(int i = T; i != S; i = fa[i])
{
int t1 = f1 + f[i][], t0 = f0 + f[i][];
f0 = max(t1, t0); f1 = t0;
}
f[S][] += f1;
} void dfs(int u, int gra)
{
fa[u] = gra; dfn[u] = low[u] = ++ timer;
f[u][] = , f[u][] = ;
for(int i = head[u]; i; i = E[i].last)
{
int v = E[i].to;
if(!dfn[v]) dfs(v, u), low[u] = min(low[u], low[v]);
else if(v != gra) low[u] = min(low[u], dfn[v]);
if(low[v] > dfn[u])
f[u][] += f[v][], f[u][] += max(f[v][], f[v][]);
}
for(int i = head[u]; i; i = E[i].last)
if(fa[E[i].to] != u && dfn[u] < dfn[E[i].to])
DP(u, E[i].to);
} int main()
{
n = read(), m = read();
for(int i = ; i <= m; i ++)
{
int u = read(), v = read();
add(u, v);
}
dfs(, );
printf("%d\n", max(f[][], f[][]));
return ;
}
【题解】Bzoj4316小C的独立集的更多相关文章
- BZOJ4316 小C的独立集 【仙人掌】
题目 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使取出的点尽量多. ...
- bzoj4316: 小C的独立集
Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...
- [BZOJ4316]小C的独立集(圆方树DP)
题意:求仙人掌图直径. 算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲. 建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的 ...
- 2019.02.07 bzoj4316: 小C的独立集(仙人掌+树形dp)
传送门 题意:给出一个仙人掌森林求其最大独立集. 思路:如果没有环可以用经典的树形dpdpdp解决. fi,0/1f_{i,0/1}fi,0/1表示第iii个点不选/选的最大独立集. 然后fi,0+ ...
- [BZOJ4316]小C的独立集 仙人掌?
题目链接 因为xls让我每周模拟一次,然后学习模拟中没有学过的东西.所以就来学圆方树. 本来这道题用不着圆方树,但是圆方树是看yyb的博客学的,他在里面讲一下作为一个引子,所以也来写一下. 首先来Ta ...
- bzoj4316小C的独立集(dfs树/仙人掌+DP)
本题有两种写法,dfs树上DP和仙人掌DP. 先考虑dfs树DP. 什么是dfs树?其实是对于一棵仙人掌,dfs后形成生成树,找出非树边(即返祖边),然后dfs后每条返祖边+其所覆盖的链构成了一个环( ...
- 【BZOJ4316】小C的独立集(动态规划)
[BZOJ4316]小C的独立集(动态规划) 题面 BZOJ 题解 考虑树的独立集求法 设\(f[i][0/1]\)表示\(i\)这个点一定不选,以及\(i\)这个点无所谓的最大值 转移\(f[u][ ...
- 【BZOJ4316】小C的独立集(仙人掌,动态规划)
[BZOJ4316]小C的独立集(仙人掌,动态规划) 题面 BZOJ 题解 除了普通的动态规划以外,这题还可以用仙人掌的做法来做. 这里没有必要把圆方树给建立出来 \(Tarjan\)的本质其实就是一 ...
- 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集
4316: 小C的独立集 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 57 Solved: 41[Submit][Status][Discuss] ...
随机推荐
- 爬虫之requests模块基础
一.request模块介绍 1. 什么是request模块 - python中原生的基于网络请求的模块,模拟浏览器发起请求. 2. 为什么使用request模块 - urllib需要手动处理url编码 ...
- 网站标题被篡改成北京赛车、PK10的解决处理办法
客户网站于近日被跳转到赌博网站,打开后直接跳转到什么北京赛车,PK10等内容的网站上去,客户网站本身做了百度的推广,导致所有访问用户都跳转到赌博网站上去,给客户带来很大的经济损失,再一个官方网站的形象 ...
- C++代码理解 (强制指针转换)
#include<iostream> using namespace std; class A { public: A() { a=; b=; c=; f=; } private: int ...
- 关于xampp 集成开发包电脑重启mysql无法启动的问题
关于xampp 集成开发包电脑重启mysql无法启动的问题. 在做php开发时,安装过xampp,也不知道是版本老了还是什么问题,总是出现当天晚上下班关机,第二天上班mysql不能启动,在网上查找些资 ...
- WebSocket 的使用
Java 控制台程序实现类似广播功能 服务器端代码 添加 maven 依赖 <dependency> <groupId>javax.websocket</groupId& ...
- 【TRICK】[0,n)中所有大小为k的子集的方法
<< k) - ; <<n)) { int x = comb & -comb, y = comb + x; comb = (((comb & ~y)/x)> ...
- onenet基础通信套件返回+CIS ERROR: 50的问题解决
1. 场景分析,主要问题就是有些操作返回+CIS ERROR: 50 2. 看了一下在AT+MIPLOBSERVERSP这个指令里面是没有返回+CIS ERROR: 50的错误类型的,所以应该是在解析 ...
- 关于 SSH Server 的整体设定
# . 关于 SSH Server 的整体设定,包含使用的 port 啦,以及使用的密码演算方式 Port # SSH 预设使用 这个 port,您也可以使用多的 port ! # 亦即重复使用 po ...
- 30分钟玩转css3动画, transition,animation
其实css3动画是就是2种实现,一种是transition,另一种就是animation.transition实现的话就是只能定制开始帧,和结束2帧:而animation实现的话可以写很多关键帧.没有 ...
- 链接程序的时候遇到问题:fatal error LNK1104: cannot open file 'rctrl-d.lib'
1.lib库文件没有添加到工程中(工程里面根本就没有这个文件) 2.