Luogu 4438 [HNOI/AHOI2018]道路
$dp$。
这道题最关键的是这句话:
跳出思维局限大胆设状态,设$f_{x, i, j}$表示从$x$到根要经过$i$条公路,$j$条铁路的代价,那么对于一个叶子结点,有$f_{x, i, j} = c_x * (a_x + i) * (b_x + j)$,对于内部结点,有转移:
$f_{x, i, j} = min(f_{lson(x), i + 1, j} + f_{rson(x), i, j}, f_{lson(x), i, j}) + f_{rson(x), i, j + 1}$。
然后$40000 * 40 * 40$就快$512MB$了,然后最后一个点就光荣$MLE$了。
所以要写成记搜的,就可以省掉一半$f$数组的空间。
时间复杂度上界是$O(n * 40 * 40)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = ;
const int M = ;
const ll inf = 0x3f3f3f3f3f3f3f3f; int n, son[N][], a[N], b[N], c[N];
ll f[N][M][M]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} template <typename T>
inline T min(T x, T y) {
return x > y ? y : x;
} ll dfs(int x, int i, int j) {
if(x >= n)
return 1LL * c[x - n + ] * (a[x - n + ] + i) * (b[x - n + ] + j);
if(f[x][i][j] != inf) return f[x][i][j];
return f[x][i][j] = min(dfs(son[x][], i + , j) + dfs(son[x][], i, j), dfs(son[x][], i, j) + dfs(son[x][], i, j + ));
} int main() {
// freopen("road20.in", "r", stdin); read(n);
for(int lc, rc, i = ; i < n; i++) {
read(lc), read(rc);
if(lc < ) lc = n - - lc;
if(rc < ) rc = n - - rc;
son[i][] = lc, son[i][] = rc;
} for(int i = ; i <= n; i++)
read(a[i]), read(b[i]), read(c[i]); memset(f, 0x3f, sizeof(f));
printf("%lld\n", dfs(, , ));
return ;
}
Luogu 4438 [HNOI/AHOI2018]道路的更多相关文章
- 【题解】Luogu P4438 [HNOI/AHOI2018]道路
原题传送门 实际就是一道简单的树形dp 设f[u][i][j]表示从根结点到结点u经过i条未翻修公路,j条未翻修铁路的贡献最小值 边界条件:f[leaf][i][j]=(A+i)(B+j)C (题目上 ...
- Luogu P4438 [HNOI/AHOI2018]道路
题目 注意到\(n\)不大并且深度不大. 记\((u,ls_u)\)为\(L\)边,\((u,rs_u)\)为\(r\)边. 所以我们可以设\(f_{p,i,j}\)表示从根到\(p\)有\(i\)条 ...
- 【题解】Luogu P4436 [HNOI/AHOI2018]游戏
原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...
- BZOJ5290 & 洛谷4438:[HNOI/AHOI2018]道路——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5290 https://www.luogu.org/problemnew/show/P4438 的确 ...
- [HNOI/AHOI2018]道路
Description: W 国的交通呈一棵树的形状.W 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1\)到\(n\)编号,且\(1 ...
- 洛谷P4438 [HNOI/AHOI2018]道路(dp)
题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...
- P4438 [HNOI/AHOI2018]道路
辣稽题目 毁我青春 耗我钱财. 设\(f[x][i][j]\)为从1号点走到x点经过i条公路j条铁路,子树的最小代价. \(f[leaf][i][j]=(A+i)(B+j)C\) \(f[x][i][ ...
- luogu P4437 [HNOI/AHOI2018]排列
luogu 问题本质是把\(a_i\)作为\(i\)的父亲,然后如果有环就不合法,否则每次要取数,要满足取之前他的父亲都被取过(父亲为0可以直接取),求最大价值 贪心想法显然是要把权值大的尽量放在后面 ...
- 【题解】 [HNOI/AHOI2018]道路 (动态规划)
懒得复制,戳我戳我 Solution: \(dp[i][j][k]\)以\(i\)为子树根节点,到根节点中有\(j\)条公路没修,\(k\)条铁路没修,存子树不便利和 \(dp[i][j][k]=mi ...
随机推荐
- 二分答案(Widespread )
二分答案其实是变相贪心,这周算是被这个虐了,怎么都想不到,比如这题,一直纠结在最大值的贪心上后面队友一指点,原来可以先减去x*b,然后a-b随机分配就好了, 仔细一想没错呀,每次攻击必然受到x*b次伤 ...
- js删除局部变量的实现方法
lert('value:'+str+'\ttype:'+typeof(str)) //声明变量前,引用 var str="dd"; alert('value:'+str+'\tty ...
- fn project 生产环境使用
此为官方的参考说明 Running Fn in Production The QuickStart guide is intended to quickly get started and kic ...
- FastAdmin 出现慢的问题 (DB host)
FastAdmin 出现慢的问题 用户反馈断网后 FastAdmin 后台变慢. 而且是很多同事出现一样的现象. 查看了 runtime / log 里的日志,发现 DB 时间超过 20s. 经过群里 ...
- EM64T和64位是不是一个概念啊?他们有什么区别啊,怎么区分啊?
首先我们要解决什么是64位这个问题.究竟什么是64位处理器呢?64 bit是相对于32 Bit而言的,这个位数指的是CPU GPRs(General-Purpose Registers,通用寄存器)数 ...
- Java-Maven-Runoob:Maven 自动化构建
ylbtech-Java-Maven-Runoob:Maven 自动化构建 1.返回顶部 1. 自动化构建定义了这样一种场景: 在一个项目成功构建完成后,其相关的依赖工程即开始构建,这样可以保证其依赖 ...
- Struts2接受页面传值过程中出现input的问题
其实我在使用Struts2的时候,遇到要求返回input的时候不算少.一般我们在使用Struts2的时候,都会返回SUCCESS/ERROR,或者是NONE以到Strtuts的配置文件中再进行相应的处 ...
- 第十二章 MySQL触发器(待续)
······
- Android 4学习(8):用户界面 - Fragment
参考<Professional Android 4 Development> Fragment简介 Fragment是我们可以将Activity分成不同的组成部分,这些组成部分拥有自己的生 ...
- 前端自动化之webstrom
前端自动化之webstrom 在刚接触前端的时候,使用的就一直是webstrom,版本是webstrom 8. 前端自动画使用的时候,因为webstrom 8版本是没有集成gulp的.所以每次使用都默 ...