Luogu 4438 [HNOI/AHOI2018]道路
$dp$。
这道题最关键的是这句话:
跳出思维局限大胆设状态,设$f_{x, i, j}$表示从$x$到根要经过$i$条公路,$j$条铁路的代价,那么对于一个叶子结点,有$f_{x, i, j} = c_x * (a_x + i) * (b_x + j)$,对于内部结点,有转移:
$f_{x, i, j} = min(f_{lson(x), i + 1, j} + f_{rson(x), i, j}, f_{lson(x), i, j}) + f_{rson(x), i, j + 1}$。
然后$40000 * 40 * 40$就快$512MB$了,然后最后一个点就光荣$MLE$了。
所以要写成记搜的,就可以省掉一半$f$数组的空间。
时间复杂度上界是$O(n * 40 * 40)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = ;
const int M = ;
const ll inf = 0x3f3f3f3f3f3f3f3f; int n, son[N][], a[N], b[N], c[N];
ll f[N][M][M]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} template <typename T>
inline T min(T x, T y) {
return x > y ? y : x;
} ll dfs(int x, int i, int j) {
if(x >= n)
return 1LL * c[x - n + ] * (a[x - n + ] + i) * (b[x - n + ] + j);
if(f[x][i][j] != inf) return f[x][i][j];
return f[x][i][j] = min(dfs(son[x][], i + , j) + dfs(son[x][], i, j), dfs(son[x][], i, j) + dfs(son[x][], i, j + ));
} int main() {
// freopen("road20.in", "r", stdin); read(n);
for(int lc, rc, i = ; i < n; i++) {
read(lc), read(rc);
if(lc < ) lc = n - - lc;
if(rc < ) rc = n - - rc;
son[i][] = lc, son[i][] = rc;
} for(int i = ; i <= n; i++)
read(a[i]), read(b[i]), read(c[i]); memset(f, 0x3f, sizeof(f));
printf("%lld\n", dfs(, , ));
return ;
}
Luogu 4438 [HNOI/AHOI2018]道路的更多相关文章
- 【题解】Luogu P4438 [HNOI/AHOI2018]道路
原题传送门 实际就是一道简单的树形dp 设f[u][i][j]表示从根结点到结点u经过i条未翻修公路,j条未翻修铁路的贡献最小值 边界条件:f[leaf][i][j]=(A+i)(B+j)C (题目上 ...
- Luogu P4438 [HNOI/AHOI2018]道路
题目 注意到\(n\)不大并且深度不大. 记\((u,ls_u)\)为\(L\)边,\((u,rs_u)\)为\(r\)边. 所以我们可以设\(f_{p,i,j}\)表示从根到\(p\)有\(i\)条 ...
- 【题解】Luogu P4436 [HNOI/AHOI2018]游戏
原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...
- BZOJ5290 & 洛谷4438:[HNOI/AHOI2018]道路——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5290 https://www.luogu.org/problemnew/show/P4438 的确 ...
- [HNOI/AHOI2018]道路
Description: W 国的交通呈一棵树的形状.W 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1\)到\(n\)编号,且\(1 ...
- 洛谷P4438 [HNOI/AHOI2018]道路(dp)
题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...
- P4438 [HNOI/AHOI2018]道路
辣稽题目 毁我青春 耗我钱财. 设\(f[x][i][j]\)为从1号点走到x点经过i条公路j条铁路,子树的最小代价. \(f[leaf][i][j]=(A+i)(B+j)C\) \(f[x][i][ ...
- luogu P4437 [HNOI/AHOI2018]排列
luogu 问题本质是把\(a_i\)作为\(i\)的父亲,然后如果有环就不合法,否则每次要取数,要满足取之前他的父亲都被取过(父亲为0可以直接取),求最大价值 贪心想法显然是要把权值大的尽量放在后面 ...
- 【题解】 [HNOI/AHOI2018]道路 (动态规划)
懒得复制,戳我戳我 Solution: \(dp[i][j][k]\)以\(i\)为子树根节点,到根节点中有\(j\)条公路没修,\(k\)条铁路没修,存子树不便利和 \(dp[i][j][k]=mi ...
随机推荐
- nodejs docker 开发最好选择yarn 进行包管理而不是npm
npm 与yarn 的区别网上一大堆的文章,我们在构建docker 镜像是应该遵守的有些原则 基础镜像尽量小 对于构建进行缓存处理 构建的docker 的文件层数尽量少 能直接运行的,就别进行重复 ...
- gatsbyjs 使用
1. 安装 npm install --global gatsby-cli 2. 使用 // 创建项目 gatsby new dalong cd dalong // 启动 gatsby develop ...
- QLCDNumber设置背景色和显示数字颜色【转载】
http://www.qtcn.org/bbs/read-htm-tid-55176.html //LCD时间显示 QLCDNumber *m_pLcdTime = new QLCDNumber ...
- 根据wsdl文件生成WebService客户端代码
有时候在项目中,一个项目可能有好几个公司在做.系统之间难免会出现互相调用接口的现象,这时候有一种办法就是使用webService.本篇文章将介绍如何将对接系统提供的WebService接口,根据对方提 ...
- ror配置unicorn部署
unicorn是目前在ror上比较流行的应用服务器,配合nginx用来直接部署rails程序,下面这种方式应该是共享socket,不断fork子进程,有点类似php-fpm的模式 安装unicorn ...
- FPGA中RAM使用探索
FPGA中RAM的使用探索.以4bitX4为例,数据位宽为4为,深度为4. 第一种方式,直接调用4bitX4的RAM.编写控制逻辑对齐进行读写. quartus ii 下的编译,资源消耗情况. 85C ...
- HTTP-POST
POST方式:用来向目的服务器发出请求,要求它接受被附在请求后的实体,并把它当作请求队列中请求URI所指定资源的附加新子项,Post被设计成用统一的方法实现下列功能: 1:对现有资源的解释: 2:向电 ...
- selenium之 chromedriver与chrome版本映射表
看到网上基本没有最新的chromedriver与chrome的对应关系表,便兴起整理了一份如下,希望对大家有用: chromedriver版本 支持的Chrome版本 v2.40 v66-68 v2. ...
- java图形用户界面添加图片的代码
package com.aa; import java.awt.Component; import javax.swing.ImageIcon; import javax.swing.JPanel; ...
- 菜鸟天天不懂,那就天天敲它。。。还不懂。。。JAVA数组比较大小。
package com.aini; import java.util.Scanner; //操...为什么数组的大小比较我硬是搞不懂,比较大小依然放在for循环里... //从键盘输入一组数据,并输出 ...