$dp$。

这道题最关键的是这句话:

跳出思维局限大胆设状态,设$f_{x, i, j}$表示从$x$到根要经过$i$条公路,$j$条铁路的代价,那么对于一个叶子结点,有$f_{x, i, j} = c_x * (a_x + i) * (b_x + j)$,对于内部结点,有转移:

  $f_{x, i, j} = min(f_{lson(x), i + 1, j} + f_{rson(x), i, j}, f_{lson(x), i, j}) + f_{rson(x), i, j + 1}$。

然后$40000 * 40 * 40$就快$512MB$了,然后最后一个点就光荣$MLE$了。

所以要写成记搜的,就可以省掉一半$f$数组的空间。

时间复杂度上界是$O(n * 40 * 40)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = ;
const int M = ;
const ll inf = 0x3f3f3f3f3f3f3f3f; int n, son[N][], a[N], b[N], c[N];
ll f[N][M][M]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} template <typename T>
inline T min(T x, T y) {
return x > y ? y : x;
} ll dfs(int x, int i, int j) {
if(x >= n)
return 1LL * c[x - n + ] * (a[x - n + ] + i) * (b[x - n + ] + j);
if(f[x][i][j] != inf) return f[x][i][j];
return f[x][i][j] = min(dfs(son[x][], i + , j) + dfs(son[x][], i, j), dfs(son[x][], i, j) + dfs(son[x][], i, j + ));
} int main() {
// freopen("road20.in", "r", stdin); read(n);
for(int lc, rc, i = ; i < n; i++) {
read(lc), read(rc);
if(lc < ) lc = n - - lc;
if(rc < ) rc = n - - rc;
son[i][] = lc, son[i][] = rc;
} for(int i = ; i <= n; i++)
read(a[i]), read(b[i]), read(c[i]); memset(f, 0x3f, sizeof(f));
printf("%lld\n", dfs(, , ));
return ;
}

Luogu 4438 [HNOI/AHOI2018]道路的更多相关文章

  1. 【题解】Luogu P4438 [HNOI/AHOI2018]道路

    原题传送门 实际就是一道简单的树形dp 设f[u][i][j]表示从根结点到结点u经过i条未翻修公路,j条未翻修铁路的贡献最小值 边界条件:f[leaf][i][j]=(A+i)(B+j)C (题目上 ...

  2. Luogu P4438 [HNOI/AHOI2018]道路

    题目 注意到\(n\)不大并且深度不大. 记\((u,ls_u)\)为\(L\)边,\((u,rs_u)\)为\(r\)边. 所以我们可以设\(f_{p,i,j}\)表示从根到\(p\)有\(i\)条 ...

  3. 【题解】Luogu P4436 [HNOI/AHOI2018]游戏

    原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...

  4. BZOJ5290 & 洛谷4438:[HNOI/AHOI2018]道路——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5290 https://www.luogu.org/problemnew/show/P4438 的确 ...

  5. [HNOI/AHOI2018]道路

    Description: W 国的交通呈一棵树的形状.W 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1\)到\(n\)编号,且\(1 ...

  6. 洛谷P4438 [HNOI/AHOI2018]道路(dp)

    题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...

  7. P4438 [HNOI/AHOI2018]道路

    辣稽题目 毁我青春 耗我钱财. 设\(f[x][i][j]\)为从1号点走到x点经过i条公路j条铁路,子树的最小代价. \(f[leaf][i][j]=(A+i)(B+j)C\) \(f[x][i][ ...

  8. luogu P4437 [HNOI/AHOI2018]排列

    luogu 问题本质是把\(a_i\)作为\(i\)的父亲,然后如果有环就不合法,否则每次要取数,要满足取之前他的父亲都被取过(父亲为0可以直接取),求最大价值 贪心想法显然是要把权值大的尽量放在后面 ...

  9. 【题解】 [HNOI/AHOI2018]道路 (动态规划)

    懒得复制,戳我戳我 Solution: \(dp[i][j][k]\)以\(i\)为子树根节点,到根节点中有\(j\)条公路没修,\(k\)条铁路没修,存子树不便利和 \(dp[i][j][k]=mi ...

随机推荐

  1. 二分答案(Widespread )

    二分答案其实是变相贪心,这周算是被这个虐了,怎么都想不到,比如这题,一直纠结在最大值的贪心上后面队友一指点,原来可以先减去x*b,然后a-b随机分配就好了, 仔细一想没错呀,每次攻击必然受到x*b次伤 ...

  2. js删除局部变量的实现方法

    lert('value:'+str+'\ttype:'+typeof(str)) //声明变量前,引用 var str="dd"; alert('value:'+str+'\tty ...

  3. fn project 生产环境使用

    此为官方的参考说明   Running Fn in Production The QuickStart guide is intended to quickly get started and kic ...

  4. FastAdmin 出现慢的问题 (DB host)

    FastAdmin 出现慢的问题 用户反馈断网后 FastAdmin 后台变慢. 而且是很多同事出现一样的现象. 查看了 runtime / log 里的日志,发现 DB 时间超过 20s. 经过群里 ...

  5. EM64T和64位是不是一个概念啊?他们有什么区别啊,怎么区分啊?

    首先我们要解决什么是64位这个问题.究竟什么是64位处理器呢?64 bit是相对于32 Bit而言的,这个位数指的是CPU GPRs(General-Purpose Registers,通用寄存器)数 ...

  6. Java-Maven-Runoob:Maven 自动化构建

    ylbtech-Java-Maven-Runoob:Maven 自动化构建 1.返回顶部 1. 自动化构建定义了这样一种场景: 在一个项目成功构建完成后,其相关的依赖工程即开始构建,这样可以保证其依赖 ...

  7. Struts2接受页面传值过程中出现input的问题

    其实我在使用Struts2的时候,遇到要求返回input的时候不算少.一般我们在使用Struts2的时候,都会返回SUCCESS/ERROR,或者是NONE以到Strtuts的配置文件中再进行相应的处 ...

  8. 第十二章 MySQL触发器(待续)

    ······

  9. Android 4学习(8):用户界面 - Fragment

    参考<Professional Android 4 Development> Fragment简介 Fragment是我们可以将Activity分成不同的组成部分,这些组成部分拥有自己的生 ...

  10. 前端自动化之webstrom

    前端自动化之webstrom 在刚接触前端的时候,使用的就一直是webstrom,版本是webstrom 8. 前端自动画使用的时候,因为webstrom 8版本是没有集成gulp的.所以每次使用都默 ...