Description

Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gang are practicing jumping over hurdles. They are getting tired, though, so they want to be able to use as little energy as possible to jump over the hurdles.

Obviously, it is not very difficult for a cow to jump over several very short hurdles, but one tall hurdle can be very stressful. Thus, the cows are only concerned about the height of the tallest hurdle they have to jump over.

The cows' practice room has N ( 1 ≤ N ≤ 300 ) stations, conveniently labeled 1..N. A set of M ( 1 ≤ M ≤ 25,000 ) one-way paths connects pairs of stations; the paths are also conveniently labeled 1..M. Path itravels from station Si to station Ei and contains exactly one hurdle of height Hi ( 1 ≤ Hi ≤ 1,000,000 ). Cows must jump hurdles in any path they traverse.

The cows have T ( 1 ≤ T ≤ 40,000 ) tasks to complete. Task i comprises two distinct numbers, Ai and Bi ( 1 ≤ Ai ≤ N; 1 ≤ Bi ≤ N ), which connote that a cow has to travel from station Ai to station Bi (by traversing over one or more paths over some route). The cows want to take a path the minimizes the height of the tallest hurdle they jump over when traveling from Ai to Bi. Your job is to write a program that determines the path whose tallest hurdle is smallest and report that height.

Input

* Line 1:   Three space-separated integers: NM, and T

* Lines 2..M+1:   Line i+1 contains three space-separated integers: Si , Ei , and Hi

* Lines M+2..M+T+1:   Line i+M+1 contains two space-separated integers that describe task iAi and Bi

Output

* Lines 1..T:   Line i contains the result for task i and tells the smallest possible maximum height necessary to travel between the stations. Output -1 if it is impossible to travel between the two stations.

Sample Input

5 6 3
1 2 12
3 2 8
1 3 5
2 5 3
3 4 4
2 4 8
3 4
1 2
5 1

Sample Output

4
8
-1

题意:有一头牛,要进行跳木桩训练,已知有n个木桩,而且知道m对木桩之间的高度差。但是它很懒,它想尽可能的跳最小的高度就完成从任意一个木桩到任意一个木桩的跳跃,给m对点,问是否存在最小的跳跃高度使得其能够完成跳跃,如果有就输出最小高度;否则输出-1。

解析:无非就是求个每条路的单边最大值然后取最小那个吗,由于是求任意两木桩之间的所有路径上最大高度差值的最小值,所以我们可以用Floyd算法,对其进行处理,处理之后得到的最终结果即为所求了。

AC代码:

#include<stdio.h>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
int main()
{
int e[][];
int n,m,t,u,v,w;
scanf("%d%d%d",&n,&m,&t);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(i==j)
e[i][j]=;
else
e[i][j]=INF;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
if(e[u][v]>w)
e[u][v]=w;
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
e[i][j]=min(e[i][j],max(e[i][k],e[k][j]));
while(t--)
{
scanf("%d%d",&u,&v);
if(e[u][v]!=INF)
printf("%d\n",e[u][v]);
else
printf("-1\n"); }
return ;
}

做题后感:一开始是考虑深收与DJ算法,后来考虑到是可以提问多个,就改成了flaoy算法,以后多提问问题可以多考虑可以预处理全局的算法

OJ 21651::Cow Hurdles(佛罗一德的变式)的更多相关文章

  1. 佛洛依德 c++ 最短路径算法

    //20142880 唐炳辉 石家庄铁道大学 #include<iostream> #include<string> using namespace std; #define ...

  2. BZOJ 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏( floyd )

    直接floyd.. ---------------------------------------------------------------------------- #include<c ...

  3. 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏

    1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 424  Solved: 272 ...

  4. bzoj1641 / P2888 [USACO07NOV]牛栏Cow Hurdles

    P2888 [USACO07NOV]牛栏Cow Hurdles Floyd $n<=300$?果断Floyd 给出核心式,自行体会 $d[i][j]=min(d[i][j],max(d[i][k ...

  5. codevs 2803 爱丽丝·玛格特罗依德

    二次联通门 : codevs 2803 爱丽丝·玛格特罗依德 /* codevs 2803 爱丽丝·玛格特罗伊德 高精 + 找规律 显然, 能拆3就多拆3 不能拆就拆2 注意特判一下 */ #incl ...

  6. POJ 3615 Cow Hurdles(最短路径flyod)

    Cow Hurdles Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9337   Accepted: 4058 Descr ...

  7. Luogu P2888 [USACO07NOV]牛栏Cow Hurdles

    题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gan ...

  8. 洛谷 P2888 [USACO07NOV]牛栏Cow Hurdles

    题目戳 题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the ...

  9. 洛谷P2888 [USACO07NOV]牛栏Cow Hurdles

    题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gan ...

随机推荐

  1. 数组 array 矩阵 list 数据框 dataframe

    转自 :  http://blog.csdn.net/u011253874/article/details/43115447 <span style="font-size:14px;& ...

  2. 利用AdaBoost方法构建多个弱分类器进行分类

    1.AdaBoost 思想 补充:这里的若分类器之间有比较强的依赖关系;对于若依赖关系的分类器一般使用Bagging的方法 弱分类器是指分类效果要比随机猜测效果略好的分类器,我们可以通过构建多个弱分类 ...

  3. Entity Framework 6.0 Tutorials(4):Database Command Logging

    Database Command Logging: In this section, you will learn how to log commands & queries sent to ...

  4. Office Web APP预览如何去掉顶部版权标志“Microsoft Office Web Apps”

    在Office Web APP的预览会涉及4中类型的文 件:Word.Excel.PowerPoint.PDF,不同的类型在预览时调用的文件是不一样的,其中Word和 PDF调用的是同一个文件.每个预 ...

  5. VC维的来龙去脉(转)

    本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. H ...

  6. TP5图片上传

    /*图片上传*/ public function upload(){ // 获取表单上传文件 例如上传了001.jpg $file = request()->file('file'); // 移 ...

  7. 认识HttpContext.User

    HttpContext.User,即IPrincipal .net源代码 namespace System.Security.Principal { /// <summary>Define ...

  8. up6-chrome 45+安装教程

    up6-Chrome 45+安装说明 说明:只需要安装up6.exe即可,up6.exe为插件集成安装包. 1.以管理员身份运行up6.exe.up6.exe中已经集成Chrome 45插件.  

  9. adb命令安装及卸载应用

    一.手机连接电脑,检测手机是否已开启授权并连接成功 adb devices 二.安装应用 adb install UYUN-CARRIER-Android.apk 三.卸载应用 1.查看应用包名 ad ...

  10. SpringMVC+Hibernate 项目开发之二 (STS整合Maven)

    为什么用STS不用Eclipse,主要是Eclipse集成Maven把我整疯了,最后估计原因除在网速上了. 其实用了STS以后发现还真比Eclipse好用点. STS本身集成有Maven的,但是默认的 ...