StratifiedShuffleSplit 交叉验证
python中数据集划分函数StratifiedShuffleSplit的使用
文章开始先讲下交叉验证,这个概念同样适用于这个划分函数
1.交叉验证(Cross-validation)
交叉验证是指在给定的建模样本中,拿出其中的大部分样本进行模型训练,生成模型,留小部分样本用刚建立的模型进行预测,并求这小部分样本的预测误差,记录它们的平方加和。这个过程一直进行,直到所有的样本都被预测了一次而且仅被预测一次,比较每组的预测误差,选取误差最小的那一组作为训练模型。下图所示
2.StratifiedShuffleSplit函数的使用
官方文档
用法:
from sklearn.model_selection import StratifiedShuffleSplit
StratifiedShuffleSplit(n_splits=10,test_size=None,train_size=None, random_state=None)
2.1 参数说明
参数 n_splits是将训练数据分成train/test对的组数,可根据需要进行设置,默认为10
参数test_size和train_size是用来设置train/test对中train和test所占的比例。例如:
1.提供10个数据num进行训练和测试集划分
2.设置train_size=0.8 test_size=0.2
3.train_num=num*train_size=8 test_num=num*test_size=2
4.即10个数据,进行划分以后8个是训练数据,2个是测试数据
注*:train_num≥2,test_num≥2 ;test_size+train_size可以小于1*
参数 random_state控制是将样本随机打乱
2.2 函数作用描述
1.其产生指定数量的独立的train/test数据集划分数据集划分成n组。
2.首先将样本随机打乱,然后根据设置参数划分出train/test对。
3.其创建的每一组划分将保证每组类比比例相同。即第一组训练数据类别比例为2:1,则后面每组类别都满足这个比例
2.3 具体实现
from sklearn.model_selection import StratifiedShuffleSplit
import numpy as np
X = np.array([[1, 2], [3, 4], [1, 2], [3, 4],
[1, 2],[3, 4], [1, 2], [3, 4]])#训练数据集8*2
y = np.array([0, 0, 1, 1,0,0,1,1])#类别数据集8*1
ss=StratifiedShuffleSplit(n_splits=5,test_size=0.25,train_size=0.75,random_state=0)#分成5组,测试比例为0.25,训练比例是0.75
for train_index, test_index in ss.split(X, y):
print("TRAIN:", train_index, "TEST:", test_index)#获得索引值
X_train, X_test = X[train_index], X[test_index]#训练集对应的值
y_train, y_test = y[train_index], y[test_index]#类别集对应的值
运行结果:
从结果看出,1.训练集是6个,测试集是2,与设置的所对应;2.五组中每组对应的类别比例相同
from:https://blog.csdn.net/m0_38061927/article/details/76180541
StratifiedShuffleSplit 交叉验证的更多相关文章
- 使用sklearn进行交叉验证
模型评估方法 假如我们有一个带标签的数据集D,我们如何选择最优的模型? 衡量模型好坏的标准是看这个模型在新的数据集上面表现的如何,也就是看它的泛化误差.因为实际的数据没有标签,所以泛化误差是不可能直接 ...
- MATLAB曲面插值及交叉验证
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点.插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值.曲面插值是对三维数据进行离 ...
- 交叉验证(Cross Validation)原理小结
交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...
- scikit-learn一般实例之一:绘制交叉验证预测
本实例展示怎样使用cross_val_predict来可视化预测错误: # coding:utf-8 from pylab import * from sklearn import datasets ...
- oracle ebs应用产品安全性-交叉验证规则
转自: http://blog.itpub.net/298600/viewspace-625138/ 定义: Oracle键弹性域可以根据自定义键弹性域时所定义的规则,执行段值组合的自动交叉验证.使用 ...
- SVM学习笔记(二):什么是交叉验证
交叉验证:拟合的好,同时预测也要准确 我们以K折交叉验证(k-folded cross validation)来说明它的具体步骤.{A1,A2,A3,A4,A5,A6,A7,A8,A9} 为了简化,取 ...
- 交叉验证 Cross validation
来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...
- k-折交叉验证(k-fold crossValidation)
k-折交叉验证(k-fold crossValidation): 在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数 ...
- paper 35 :交叉验证(CrossValidation)方法思想
交叉验证(CrossValidation)方法思想简介 以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(da ...
随机推荐
- Python是如何进行类型转换的?
函数 描述int(x [,base ]) 将x转换为一个整数long(x [,base ]) 将x转换为一个长整数float(x ...
- javaSE27天复习总结
JAVA学习总结 2 第一天 2 1:计算机概述(了解) 2 (1)计算机 2 (2)计算机硬件 2 (3)计算机软件 2 (4)软件开发(理解) 2 (5) ...
- Js前台页面搜索
$("#filter").on("keyup",function(){$(".aimed_list").hide().filter(&quo ...
- Linux中的预定义变量
解释: 主要是Bash中已经定好的变量,名称不能自定义,作用也是固定的 $? 最后一次执行的命令返回状态,0为成功,非0为失败 $$ 当前进程的进程号 $! 后台运行的最后一个进程的进程号 例子: [ ...
- (3.2)mysqldump之备份单个表及脚本批量备份
单库单表备份通用格式 mysqldump -uroot -p123456 test1 char_1>/opt/mysql_test1_char1.sql 分析:这里test1是库名,char_ ...
- ajax跨域资源共享
一.同域发送数据 略 二.跨域发送数据 1.存在的问题 1.什么是同源策略 同源策略阻止从一个域名上加载的脚本获取或操作另一个域名上的文档属性.也就是说,受到请求的 URL 的域名必须与当前 Web ...
- C#对Excel中指定一列或一行实现隐藏或显示!
C#对Excel中指定一列或一行实现隐藏或显示!不会,求指导!
- input date 对 placeholder 的支持问题
正常情况下,text 的 input 会显示 placeholder 中的值,date 类型的 input 对其支持不好.实例代码如下: <input type="text" ...
- token的生成和应用
token的生成和应用 接口特点汇总: 1.因为是非开放性的,所以所有的接口都是封闭的,只对公司内部的产品有效: 2.因为是非开放性的,所以OAuth那套协议是行不通的,因为没有中间用户的授权过程: ...
- cocos2d关于glew32.lib错误(转)
应项目需要使用cocos2d-x开发,又要学习新东东了.·cocos2d-x 是一个支持多平台的 2D 手机游戏引擎,用C++重写cocos2d-iphone引擎的一个开源项目,想了解更多的童鞋美去百 ...