BFS算法

上一篇文章讲解了DFS深度优先遍历的算法,我们说 DFS 顾名思义DEEPTH FIRET,以深度为第一标准来查找,以不撞南墙不回头的态度来发掘每一个点,这个算法思想get到了其实蛮简单。那么 BFS 和DFS有什么相同点和不同点呢?

我觉得有一种比喻对于 DFS 和 BFS 从方法论的角度解释很到位,DFS 就像是小明要在家里找到钥匙,因为对位置的不确定,所以一间一间的来找,深度遍历能确保小明走过所有的屋子。而 BFS 像是近视的小明的眼镜掉在了地上,小明肯定是先摸索离手比较近的位置,然后手慢慢向远方延伸,直至摸到眼镜,像是以小明为中心搜索圈不断扩大的过程。所以如果说 DFS 从遍历的层次结构上类似树的先序遍历,那么BFS算法按照里外顺序逐渐增加深度的做法,就像极了朴素的层次遍历,例如:

把左图拉平,按照层序把结点排列下来,各节点的连接关系并没有变,图结构没有发生变化,但是这时,我们从A出发,按层序遍历可以得到顺序是 A B F C I G E D H

结合上一篇文章的 DFS ,我们可以发现这两种算法的区别在每一个点上都能得以体现,比如 A 点,DFS 鼓励结点向着一个方向冲,BFS 则会在一个点上按照顶点下标次序遍历完所有没有访问过的结点,比如A点遍历完,马上开始扫描,如果 B F这两个点没有被宠幸过,那么一定要翻完 B、F 这两个点的牌子之后,才会继续访问第二层,即把A点相连的结点全部遍历完成才行,当然到了第二层 发现 B、F 早就被A安排过了,就不再进入这两个点的循环,后面的一样,这里就不再赘述。

我们回忆一下DFS算法,DFS沿着一个方向走最后是要走回头路的,因为它迟早会遍历到一个所有分支都被访问过的结点,那么要走回头路意味着我们实现 DFS 时应该选择后进先出的栈结构,而现在的 BFS 算法是每经过一个点就会遍历所有没访问过的点,同时,一个点如果已经访问完,那么它就没有利用价值了,所以应该使用队列先进先出的特点

这里是图形演示:

下面我们来看代码实现:

这是邻接矩阵实现 BFS 算法,结构定义见上一篇文章

void BFS(MGraph *G)
{
int i,j;
Queue Q;
InitQueue(&Q);
for(i = ; i < G.numVertexes;i++)
{
visited[i] = FALSE;
}
for(i = ;i < G.numVertexes;i++)
{
if(!visited[i])
{
visited[i] = TRUE;
printf("%c",&G.vexs[i]);
EnQueue(&Q,i);
while(!QueueEmpty(Q))
{
DeQueue(&Q,&i);
for(j = ;j < G.numVertexes;j++)
{
while(G.arc[i][j] == && !visited[j])
{
visited[j] = TRUE;
printf("%c",G.vexs[j]);
EnQueue(&Q,j);
}
}
}
}
}
}

这是邻接表实现的代码:

void BFS(GraphAdjList GL)
{
int i;
Queue Q;
EdgeNode *p;
InitQueue (&Q);
for(i = ;i < GL->shuliang;i++)
{
visited[i] = FALSE;
}
for(i = ;i < GL->shuliang;i++)
{
if(!visited[i])
{
visited[i] = TURE;
printf("%c",GL->adjlist[i].data);
EnQueue(&Q,i);
while(!QueueEmpty(Q))
{
DeQueue(&Q,&i);
p = GL->adjlist[i].firstedge;
while(p)
{
if(!visited[p -> adjvex])
{
visited[p -> adjvex] = TRUE;
printf("%c",GL->adjlist[p -> adjvex].data);
EnQueue(&Q,p->adjvex);
}
p = p -> next;
}
}
}
} }

个人感觉代码蛮好懂,这一块感觉需要多多思考,广度优先和深度优先小到日常生活,大到数据模型,有着广泛的作用,而这篇文章中的两种方法,因为都要遍历整张图,所以其算法时间复杂度相同,所以对于全图遍历并没有什么明确选择的优势,而如果目的在于尽快地找到目的点,那么深度优先更占优势;而如果是不断扩大遍历范围,寻找相对最优解则是广度优先看起来更划算。算法就到这里,经验和思路只能靠大家自己在实践中多多总结,得到自己使用的一套方法。

(原创)BFS广度优先算法,看完这篇就够了的更多相关文章

  1. 关于 Docker 镜像的操作,看完这篇就够啦 !(下)

    紧接着上篇<关于 Docker 镜像的操作,看完这篇就够啦 !(上)>,奉上下篇 !!! 镜像作为 Docker 三大核心概念中最重要的一个关键词,它有很多操作,是您想学习容器技术不得不掌 ...

  2. MAC上的爬虫软件怎么选?看完这篇就够了

    在上一篇文章:网络爬虫软件哪个好用? 中,我们介绍了目前市面上比较成熟好用的网络爬虫软件, 但是其中有些不能在MAC上使用,因此今天这篇文章我们单独介绍一下在MAC操作系统中有哪些好用的爬虫软件,给大 ...

  3. 还不会ida*算法?看完这篇或许能理解点。

    IDA* 算法分析 IDA* 本质上就是带有估价函数和迭代加深优化的dfs与,A * 相似A *的本质便是带 有估价函数的bfs,估价函数是什么呢?估价函数顾名思义,就是估计由目前状态达 到目标状态的 ...

  4. 研究分布式唯一ID生成,看完这篇就够

    很多大的互联网公司数据量很大,都采用分库分表,那么分库后就需要统一的唯一ID进行存储.这个ID可以是数字递增的,也可以是UUID类型的. 如果是递增的话,那么拆分了数据库后,可以按照id的hash,均 ...

  5. HTML教程(看完这篇就够了)

    HTML教程 超文本标记语言(英语:HyperText Markup Language,简称:HTML)是一种用于创建网页的标准标记语言.您可以使用 HTML 来建立自己的 WEB 站点,HTML 运 ...

  6. 关于 Docker 镜像的操作,看完这篇就够啦 !(上)

    文章首发于微信公众号: 小哈学Java 镜像作为 Docker 三大核心概念中,最重要的一个关键词,它有很多操作,是您想学习容器技术不得不掌握的.本文将带您一步一步,图文并重,上手操作来学习它. 目录 ...

  7. 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?

    简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...

  8. [转帖]看完这篇文章,我奶奶都懂了https的原理

    看完这篇文章,我奶奶都懂了https的原理 http://www.17coding.info/article/22 非对称算法 以及 CA证书 公钥 核心是 大的质数不一分解 还有 就是 椭圆曲线算法 ...

  9. Mysql快速入门(看完这篇能够满足80%的日常开发)

    这是一篇mysql的学习笔记,整理结合了网上搜索的教程以及自己看的视频教程,看完这篇能够满足80%的日常开发了. 菜鸟教程:https://www.runoob.com/mysql/mysql-tut ...

随机推荐

  1. android jni 之C语言基础

    *含义 1.乘法 3*5 2.定义指针变量 int * p://定义了一个名字叫p的变量,能够存放int数据类型的地址 3.指针运算符, //如果p是一个已经定义好的指针变量则*p表示以p的内容为地址 ...

  2. T4模板之文本模板

    网址:https://docs.microsoft.com/en-us/visualstudio/modeling/design-time-code-generation-by-using-t4-te ...

  3. FFMPEG系列一:Mac下FFMPEG编译安装配置及使用例子

    系统环境:10.13以前系统版本,没有升级到macOS High Sierra.正常情况是直接输入brew install ffmpeg即可安装ffmpeg,但是该过程还是有一些坑需要填. 一.mac ...

  4. MVC个层次之间的联系

    MVC顾名思义分为三层: M:Model层   Model层中  包含 DAO层和Javabean层: V:view 意为视图层也叫表示层,也可以直接理解为是JSP,用于前端显示: C:  ‘控制层’ ...

  5. oracle中特殊字符替换

    replace语法: REPLACE(char,search_string,[replacement_string]) 在replace中,每个search_String 都会被replacement ...

  6. NEC css规范

    CSS规范 - 分类方法 SS文件的分类和引用顺序 通常,一个项目我们只引用一个CSS,但是对于较大的项目,我们需要把CSS文件进行分类. 我们按照CSS的性质和用途,将CSS文件分成“公共型样式”. ...

  7. 洛谷P1196 [NOI2002]银河英雄传说(带权并查集)

    题目描述 公元五八○一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山压顶 ...

  8. (转)程序员新人怎样在复杂代码中找 bug?

    我曾经做了两年大型软件的维护工作,那个项目有10多年了,大约3000万行以上的代码,参与过开发的有数千人,代码checkout出来有大约5个GB,而且bug特别多,open的有上千,即使最高优先级的s ...

  9. Angular : 响应式编程, 组件间通信, 表单

    Angular 响应式编程相关 ------------------------------------------------------------------------------------ ...

  10. Linux下编译出现undefined reference to ‘pthread_create’问题解决

    1.代码 /* * File: HeartPackageSendAgent.cpp * Author: Pangxiaojian * * * 主要实现:向服务器发送心跳包,每5s向服务器发送一个心跳包 ...