BZOJ 3224 Tyvj 1728 普通平衡树 | Splay 板子+SPlay详细讲解
下面给出Splay的实现方法(复杂度证明什么的知道是 nlogn 就可以啦)
首先对于一颗可爱的二叉查找树,是不能保证最坏nlogn的复杂度(可以想象把一个升序序列插入)
(二叉查找树保证左子树元素大小都小于根元素大小,根元素大小都小于右子树元素大小,且子树都是二叉查找树)
所以我们需要一些非常巧妙的旋转操作 (ratate)来优化这棵树(并让他改名叫Splay)
(图片顺序全反了2333)
1.节点 x 的父节点 y 是根节点。这时,如果 x 是 y 的左孩子,我们进行一次 Zig (右旋)操作;如果 x 是 y 的右孩子,则我们进行一次 Zag(左旋)操作。经过旋转,x 成 为二叉查找树 S 的根节点,调整结束。
2.节点x 的父节点y 不是根节点,y 的父节点为z,且x 与y 同时是各自父节点 的左孩子或者同时是各自父节点的右孩子。这时,我们进行一次Zig-Zig操作或者Zag-Zag操作。
3.节点x的父节点y不是根节点,y的父节点为z,x与y中一个是其父节点的左孩子 而另一个是其父节点的右孩子。这时,我们进行一次Zig-Zag操作或者Zag-Zig 操作
在这个过程中我们完成了让x上移为的操作
假设我们已经领悟了这些操作,我们再学习一个Splay(x)函数让他不断调用Rotate,将x节点旋转到根节点,这样就完成了对SPlay的维护(实现比较简单,可以看代码)
非常重要的性质是,Rotate和Splay函数使得维护Splay树的时候无论以哪个节点为根,这棵树都是比较"优美"的(长得比较均匀)
下面着重讨论一下splay上的各种操作:
1.Find()
这个比较简单,我们只需要不断比较然后去左儿子或者右儿子即可
2.Insert()
先去Splay里面找x,如果找到了的话直接x计数器++,没找到就新建一个节点
我们只要重点考虑一下怎么维护这棵树的其他性质(例如子树大小)
回到刚刚的Splay()操作,我们可以发现,每次旋转之后旋转的节点的子树大小是可更新的,且不受到之后的影响(具体可画图理解)
所以我们可以把这个节点(新建的或者以前的)直接Splay到根节点就完成了维护
3.Getmax/min
额...直接不停往左或者往右即可
4.Earse
先考虑删除根节点(因为其他节点都是能移到根节点的)根节点的删除对子树信息没影响,所以可以直接删
然后现在剩下了两棵小树,我们只需要让一棵树接到另一棵树上即可,而这等价于让一棵树根节点的一个儿子为空
我们可以把左子树的最大儿子转到根,这样左子树的右儿子就是空的了,把右子树根节点接过去即可
5.getkth
利用计数器往左往右查找即可
6.getrank
这个别想得太复杂,直接把他转到根节点,左子树大小+1就是排名
7.getpre/nxt(找前驱后继)
转到根节点,然后直接找左子树最大值(右子树最小值)
讲到这里基本操作就OK啦,看看代码就学会了SPlay!
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 100010
#define which(x) (ls[fa[(x)]]==(x))
typedef long long ll;
using namespace std;
int n,root,idx,val[N],fa[N],ls[N],rs[N],sze[N],cnt[N];
int read()
{
int ret=,neg=;
char j=getchar();
for (;j>'' || j<'';j=getchar())
if (j=='-') neg=-;
for (;j>='' && j<='';j=getchar())
ret=ret*+j-'';
return ret*neg;
}
void upt(int x)//更新子树大小
{
sze[x]=sze[ls[x]]+sze[rs[x]]+cnt[x];
}
void rotate(int x)//旋转操作
{
//y是x父亲,z是y父亲,b是y的另一个儿子
int y=fa[x],z=fa[y],b=which(x)?rs[x]:ls[x],dir=which(y);
which(x)?(rs[x]=y,ls[y]=b):(ls[x]=y,rs[y]=b);
fa[y]=x,fa[b]=y,fa[x]=z;
if (z) dir?ls[z]=x:rs[z]=x;
upt(y),upt(x);//更新大小
}
void splay(int x)//把x旋转至根节点
{
//为了让树平衡,如果x和父亲同向,转fa[x]染红转x
//否则转两次x
while (fa[x])
{
if (fa[fa[x]])
if (which(x)==which(fa[x])) rotate(fa[x]);
else rotate(x);
rotate(x);
}
root=x;//现在x是根了
}
int getmin(int x)//找以x为根子树最小值节点编号
{
while (ls[x]) x=ls[x];
return x;
}
int getmax(int x)//找以x为根子树最大值节点编号
{
while (rs[x]) x=rs[x];
return x;
}
int find(int x)//找值为x的节点没有则返回
{
int cur=root,last=;
while (cur && val[cur]!=x)
{
last=cur;
if (x<val[cur]) cur=ls[cur];
else cur=rs[cur];
}
return cur?cur:last;
}
void insert(int x)//插入x
{
int cur=find(x);//找到
//如果已经存在x,把x++后splay成根节点
if (cur && val[cur]==x) return (void)(cnt[cur]++,sze[cur]++,splay(cur));
//如果不存在x就创造一个,然后splay
val[++idx]=x,fa[idx]=cur,cnt[idx]=sze[idx]=;
if (cur) x<val[cur]?ls[cur]=idx:rs[cur]=idx;
splay(idx);
}
void erase(int x)//删除值为x的节点
{
int cur=find(x);//保证存在
splay(cur);//先把x转到根
//如果x个数大于1,直接删掉就好
if (cnt[cur]>) cnt[cur]--,sze[cur]--;
//如果有一个儿子节点为空,直接让另一个为根,如果都是空就说明树为空
else if (!ls[cur] || !rs[cur]) root=ls[cur]+rs[cur],fa[root]=;
else
{
fa[ls[cur]]=;//x的左儿子没爸爸了
int u=getmax(ls[cur]);//让左子树最大值节点当新根节点,右子树的根节点是新根节点的右儿子
splay(u);
rs[u]=rs[cur],fa[rs[cur]]=u;
upt(u);
}
}
int getkth(int k)//寻找第k大,比较easy
{
int cur=root;
while (cur)
{
if (sze[ls[cur]]>=k) cur=ls[cur];
else if (sze[ls[cur]]+cnt[cur]>=k) return val[cur];
else k-=sze[ls[cur]]+cnt[cur],cur=rs[cur];
}
return val[cur];
}
int getrank(int x)//询问x排名
{
int cur=find(x);
splay(cur);
return sze[ls[cur]]+;
}
int getpre(int x)//找前驱
{
int cur=find(x);
if (val[cur]<x) return val[cur];
splay(cur);
return val[getmax(ls[cur])];
}
int getnxt(int x)//找后继
{
int cur=find(x);
if (val[cur]>x) return val[cur];
splay(cur);
return val[getmin(rs[cur])];
}
int main()
{
n=read();
for (int i=,op,x;i<=n;i++)
{
op=read(),x=read();
if (op==) insert(x);
if (op==) erase(x);
if (op==) printf("%d\n",getrank(x));
if (op==) printf("%d\n",getkth(x));
if (op==) printf("%d\n",getpre(x));
if (op==) printf("%d\n",getnxt(x));
}
return ;
}
BZOJ 3224 Tyvj 1728 普通平衡树 | Splay 板子+SPlay详细讲解的更多相关文章
- BZOJ 3224: Tyvj 1728 普通平衡树 or 洛谷 P3369 【模板】普通平衡树-Splay树模板题
3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 22483 Solved: 10130[Submit][S ...
- BZOJ 3224: Tyvj 1728 普通平衡树
3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 9629 Solved: 4091[Submit][Sta ...
- BZOJ 3224 TYVJ 1728 普通平衡树 [Treap树模板]
3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 7390 Solved: 3122 [Submit][S ...
- BZOJ 3224: Tyvj 1728 普通平衡树 treap
3224: Tyvj 1728 普通平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除 ...
- BZOJ 3224: Tyvj 1728 普通平衡树 vector
3224: Tyvj 1728 普通平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除 ...
- BZOJ 3224: Tyvj 1728 普通平衡树(BST)
treap,算是模板题了...我中间还一次交错题... -------------------------------------------------------------------- #in ...
- bzoj 3224: Tyvj 1728 普通平衡树 && loj 104 普通平衡树 (splay树)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3224 思路: splay树模板题: 推荐博客:https://blog.csdn.ne ...
- bzoj 3224/Tyvj 1728 普通平衡树(splay)
Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除一个)3. 查询x数的排名(若有多个相同的数 ...
- BZOJ 3224 Tyvj 1728 普通平衡树模板
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3224 题目大意: 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以 ...
随机推荐
- Java HotSpot(TM) 64-Bit Server VM warning: INFO: os::commit_memory(0x0000000
启动程序报错: Java HotSpot(TM) 64-Bit Server VM warning: INFO: os::commit_memory(0x00000006fff80000, 28636 ...
- Scala语法(三)
模式匹配 1)match val a = 1 val b=a match { *// a match { }返回值赋予变量 b case 1 => "red" case 2 ...
- SpringMVC+Mybatis框架搭建
一.新建javaweb项目,并建好相应的包结构 二.添加项目jar到lib目录下 三.在config包中新建配置文件 sping-mvc.xml,内容如下: <?xml version=&quo ...
- 静态栈抽象数据类型stack实现
#include<stdio.h> #include<stdbool.h> #include<stdlib.h> #define MAX_STACK_SIZE 10 ...
- git将本地项目上传到远程仓库
1.cd mygit 打开项目文件夹 2.git init 初始化git 3.git remote add origin xxx(远程仓库地址) 添加远程库 git remote -v 查看远程 ...
- ABAP CDS ON HANA-(12)ODATA Service
Create a CDS view and we have the view type as ‘BASIC’ view To publish this as oData, add the annota ...
- CentOS 7 systemd添加自定义系统服务
systemd: CentOS 7的服务systemctl脚本存放在:/usr/lib/systemd/,有系统(system)和用户(user)之分,即:/usr/lib/systemd/syste ...
- P1078 文化之旅
P1078 文化之旅 题目描述 有一位使者要游历各国,他每到一个国家,都能学到一种文化,但他不愿意学习任何一 种文化超过一次(即如果他学习了某种文化,则他就不能到达其他有这种文化的国家).不 同的国家 ...
- 《.NET 微服务:适用于容器化 .NET 应用的体系结构》关键结论
作为总结和要点,以下是本指南中最重要的结论.1 使用容器的好处: 基于容器的解决方案有节约成本的好处,因为容器是针对生产环境中缺少依赖而导致的部署问题提出的解决方案.容器能够显著改善devops和生产 ...
- 「暑期训练」「Brute Force」 Money Transfers (CFR353D2C)
题目 分析 这个Rnd353真是神仙题层出不穷啊,大力脑筋急转弯- - 不过问题也在我思维江化上.思考任何一种算法都得有一个“锚点”,就是说最笨的方法怎么办.为什么要这么思考,因为这样思考最符合我们的 ...