元素

Time Limit: 20 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。
  那时人们就认识到,一个法杖的法力取决于使用的矿石。
  一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消”。
  特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。
  后来,随着人们认知水平的提高,这个现象得到了很好的解释。
  经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。
  并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。

Input

  第一行包含一个正整数N,表示矿石的种类数。 
  接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号和魔力值。

Output

  仅有一行,一个整数:最大的魔力值

Sample Input

  3
  1 10
  2 20
  3 30

Sample Output

  50
  explain:
  由于有“魔法抵消”这一事实,每一种矿石最多使用一块。 
  如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
  则会发生魔法抵消,得不到法杖。 
  可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。 

HINT

  对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。

Main idea

  给出若干元素带两个属性a,b,求出添加若干个元素使得b最大(可加入的条件是加入的任意元素(不限制个数)XOR起来不为0)。

Solution

  考虑贪心,从最大到最小加入肯定最优,发现线性基的性质内含“无法表示出0”,所以可以使用线性基处理。(线性基是可以用内部元素XOR出来答案和原来的相当的结构)。

  加入方式:判断i的这一位是否为1,如果为1,判断线性基中这一位是否已经有匹配元,如果没有则将i当做这一位的匹配元,停止判断,Ans+=b[i]。

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE=; int n;
int len=;
long long Link[];
int Ans; struct power
{
long long a;
int b;
}a[ONE]; bool cmp(const power &a,const power &b)
{
return a.b>b.b;
} int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int main()
{
n=get(); for(int i=;i<=n;i++)
{
scanf("%lld",&a[i].a);
a[i].b=get();
} sort(a+,a+n+,cmp); for(int i=;i<=n;i++)
{
for(int pos=len;pos>=;pos--)
{
if( ((a[i].a>>(pos-))&) )
{
if(!Link[pos])
{
Link[pos]=a[i].a;
Ans+=a[i].b;
break;
}
else a[i].a^=Link[pos];
}
}
} printf("%d",Ans);
}

【BZOJ2460】【BJOI2011】元素 [线性基]的更多相关文章

  1. [BZOJ2460][BJOI2011]元素(线性基)

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2195  Solved: 1119[Submit][Sta ...

  2. [bzoj2460] [BeiJing2011]元素(线性基+贪心)

    题目大意: 有一些矿石,每个矿石有一个a和一个b值,要求选出一些矿石,b的和最大且不存在某个矿石子集它们的a的异或和为0. 解题关键:对魔力进行由大到小排序,依次加入线性基,统计即可. #includ ...

  3. BZOJ.2460.[BeiJing2011]元素(线性基 贪心)

    题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...

  4. BZOJ 2460: [BeiJing2011]元素 线性基

    2460: [BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力 ...

  5. B2460 [BeiJing2011]元素 线性基

    这个题是对刚才线性基的一个补充,就是中间有一些小贪心,贪心就很有意思,先按权值排序,然后就瞎搞就行了. 题干: Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们 ...

  6. 【题解】P4570 [BJWC2011]元素 - 线性基 - 贪心

    P4570 [BJWC2011]元素 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 给你 \(n\) 个二元组 \( ...

  7. BZOJ 2460 [BeiJing2011]元素 ——线性基

    [题目分析] 线性基,由于最多有63个,只需要排序之后,动态的去维护线性基即可. [代码] #include <cstdio> #include <cstring> #incl ...

  8. BZOJ-6-2460: [BeiJing2011]元素-线性基

    链接 :https://www.lydsy.com/JudgeOnline/problem.php?id=2460 思路 :线性基不唯一,所以排序 进行贪心选择,价值最大的线性基, #include& ...

  9. bzoj 2460 [BeiJing2011]元素 (线性基)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2460 题意: 给你一堆矿石,矿石有a,b两种性质,取任意个矿石,满足取得的这些矿石a性质异或 ...

随机推荐

  1. 对mysqlbinlog日志进行操作的总结包括 启用,过期自动删除

    操作命令: show binlog events in 'binlog.000016' limit 10; reset master 删除所有的二进制日志 flush logs  产生一个新的binl ...

  2. LaTeX工具——mathpix安利

    官网: https://mathpix.com/ 效果看下图: 图片打不开点这里 识别效果还行,感觉很适合jbc/zcy这种不喜欢打LaTex公式的神仙.

  3. quartz 使用总结

    quartz是一个任务调度框架,具体的用途比如说,我想我的程序在每天的3点干什么事,每隔多长时间做一件什么事.quartz框架就可以完美地解决这些. 1.xml配置方式 首先我是用spring来管理的 ...

  4. ACM做题随做随思

    程序停止运行:数组开太大: 输入一串单词,可以“string s; while(cin>>s){//代码块}”,因为cin>>s遇到空格会停止: map<key,valu ...

  5. # ML学习小笔记—Gradien Descent

    关于本课程的相关资料http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html 根据前面所为,当我们得到Loss方程的时候,我们希望求得最优的Loss方 ...

  6. Packet filtering with Linux & NAT

    http://www.linuxfocus.org/ChineseGB/May2003/article289.shtml Gateway, Proxy-Arp 和 Ethernet Bridge ? ...

  7. HDU 2139 Calculate the formula

    http://acm.hdu.edu.cn/showproblem.php?pid=2139 Problem Description You just need to calculate the su ...

  8. Storm ui 显示异常

    今天安装storm集群的时候,各个进程也都起来,却发现Storm ui界面下无法观察Storm集群的状态 有很多地方处理不当都会造成这种现象: 1.storm.yaml配置不当 2.防火墙的问题 3. ...

  9. 在delphi中如何解决空格的问题。。。。烦死 了。。。。

    我每次从数据库里面取数据出来和Edit里面的进行比较的时候总是会受到空格的困扰...老是干扰我...如果我用trim 所有都做去掉所有的空格那么这样就非常麻烦又繁琐..有没有什么方法可以忽略空格的.. ...

  10. Hadoop Yarn on Docker

    搭建Hadoop Yarn on Docker 一.概览 Docker基于Linux Container技术整合了一堆易用的接口用于构建非常轻量级的虚拟机.Docker Container Execu ...