3994: [SDOI2015]约数个数和

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 898  Solved: 619
[Submit][Status][Discuss]

Description

 设d(x)为x的约数个数,给定N、M,求  
 

Input

输入文件包含多组测试数据。

第一行,一个整数T,表示测试数据的组数。
接下来的T行,每行两个整数N、M。
 

Output

T行,每行一个整数,表示你所求的答案。

 

Sample Input

2
7 4
5 6

Sample Output

110
121

HINT

1<=N, M<=50000

1<=T<=50000

Source

Round 1 感谢yts1999上传

分析:

首先$d(x)$是一个积性函数,其次这个东西有一个很神奇的性质:

$d(nm)=\sum _{x\mid n} \sum _{y\mid m} [gcd(x,y)==1]$

证明如下:(懒得写了...公式打起来好麻烦...直接摘抄Sengxian的解释...QwQ)

于是接下来就直接莫比乌斯反演就好了...

$\sum _{x=1}^{n} \sum _{y=1}^{m} \left \lfloor \frac{n}{x} \right \rfloor \left \lfloor \frac{m}{y} \right \rfloor \sum _{d\mid x  d\mid y}\mu (d)$

$=\sum _{d=1}^{x} \mu(d) \sum _{i=1}^{\frac {n}{d}} \left \lfloor \frac{n}{id} \right \rfloor \sum _{j=1}^{\frac {m}{d}} \left \lfloor \frac{m}{jd} \right \rfloor$

现在有一个有用的公式:

$\left \lfloor \frac{n}{xy} \right \rfloor=\left \lfloor \frac{ \left \lfloor \frac{n}{x} \right \rfloor }{y} \right \rfloor$

于是乎,我们定义$f(x)=\sum _{i=1}^{x} \left \lfloor \frac{x}{i} \right \rfloor$,

那么式子就变成酱紫:

$\sum _{d=1}^{n} \mu(d) f(\left \lfloor \frac{n}{d} \right \rfloor) f(\left \lfloor \frac{m}{d} \right \rfloor)$

时间复杂度:$O(N\sqrt{N}+T\sqrt{N})$

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=50000+5; int n,m,cas,cnt,mu[maxn],pri[maxn],vis[maxn];
long long ans,f[maxn]; inline long long calc(int x){
long long res=0;
for(int i=1,r;i<=x;i=r+1){
r=x/(x/i);
res+=(x/i)*(r-i+1);
}
return res;
} inline void prework(void){
mu[1]=1;
for(int i=2;i<=50000;i++){
if(!vis[i])
vis[i]=1,pri[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*pri[j]<=50000;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0){
mu[i*pri[j]]=0;break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=50000;i++) mu[i]+=mu[i-1],f[i]=calc(i);
} signed main(void){
scanf("%d",&cas);prework();
while(cas--){
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);ans=0;
for(int i=1,r;i<=n;i=r+1){
r=min(n/(n/i),m/(m/i));
ans+=f[n/i]*f[m/i]*(mu[r]-mu[i-1]);
}
printf("%lld\n",ans);
}
return 0;
}

  


By NeighThorn

BZOJ 3994: [SDOI2015]约数个数和的更多相关文章

  1. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  2. 【刷题】BZOJ 3994 [SDOI2015]约数个数和

    Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T ...

  3. ●BZOJ 3994 [SDOI2015]约数个数和

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...

  4. bzoj 3994 [SDOI2015]约数个数和——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j ...

  5. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  6. BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d ...

  7. 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

    3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...

  8. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  9. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

随机推荐

  1. 使用USB Key(加密狗)实现身份认证

    首先你需要去买一个加密狗设备,加密狗是外形酷似U盘的一种硬件设备! 这里我使用的坚石诚信公司的ET99产品 公司项目需要实现一个功能,就是客户使用加密狗登录, 客户不想输入任何密码之类的东西,只需要插 ...

  2. 破解PHPStrom 10 and Pycharm

    注册时选择 License server http://idea.lanyus.com/ 然后点击OK Pycharm -- License server http://idea.lanyus.com ...

  3. java_hdfs之读写文件

    package hdfsTest.answer.hdfs; import java.io.IOException; import java.net.URI; //import java.net.URL ...

  4. JavaScript RegExp 身份证、账号密码、email正则

    什么是正则表达式 正则表达式是构成搜索模式. 在文本中搜索数据时,可以使用此搜索模式来描述正在搜索的内容. 正则表达式可以是单个字符,也可以是更复杂的模式. 正则表达式可用于执行所有类型的文本搜索和文 ...

  5. Mac下使用Charles抓包Android

    原文地址:http://fanjiajia.cn/2018/11/21/Mac%E4%B8%8B%E4%BD%BF%E7%94%A8Charles%E6%8A%93%E5%8C%85Android/ ...

  6. penLDAP学习笔记

    LDAP协议 目录是一组具有类似属性.以一定逻辑和层次组合的信息.常见的例子是通讯簿,由以字母顺序排列的名字.地址和电话号码组成.目录服务是一种在分布式环境中发现目标的方法.目录具有两个主要组成部分: ...

  7. sessionStorage & URL Origin

    sessionStorage & URL Origin same origin https://developer.mozilla.org/en-US/docs/Web/API/Window/ ...

  8. BZOJ4551 Tjoi2016&Heoi2016树(离线+并查集)

    似乎是弱化的qtree3.树剖什么的非常无脑.考虑离线.并查集维护每个点的最近打标记祖先,倒序处理,删除标记时将其与父亲合并即可. #include<iostream> #include& ...

  9. java高精度类尝试

    java高精度尝试, poj2109,比较坑的题目 import java.io.*; import java.util.*; import java.math.*; public class Mai ...

  10. 雪碧图background-position的rem用法

    background的雪碧图配合rem就正常写即可,要加上background-size,大小为sprites的原图尺寸,宽高为一帧的尺寸.例如: .player{ width: 2.32rem; / ...