SQL 当一个新表被创建之时,系统将在磁盘中分配一段以8K为单位的连续空间,当字段的值从内存写入磁盘时,就在这一既定空间随机保存,当一个8K用完的时候, SQLS指针会自动分配一个8K的空间。这里,每个8K空间被称为一个数据页(Page),又名页面或数据页面,并分配从0-7的页号,每个文件的第0页记录引导信息,叫文件头(File header);每8个数据页(64K)的组合形成扩展区(Extent),称为扩展。全部数据页的组合形成堆(Heap)。

SQLS 规定行不能跨越数据页,所以,每行记录的最大数据量只能为8K。这就是char和varchar这两种字符串类型容量要限制在8K以内的原因,存储超过 8K的数据应使用text类型,实际上,text类型的字段值不能直接录入和保存,它只是存储一个指针,指向由若干8K的文本数据页所组成的扩展区,真正的数据正是放在这些数据页中。

页面有空间页面和数据页面之分。当一个扩展区的8个数据页中既包含了空间页面又包括了数据或索引页面时,称为混合扩展(Mixed Extent),每张表都以混合扩展开始;反之,称为一致扩展专门保存数据及索引信息。表被创建之时,SQLS在混合扩展中为其分配至少一个数据页面,随着数据量的增长,SQLS可即时在混合扩展中分配出7个页面,当数据超过8个页面时,则从一致扩展中分配数据页面。

空间页面专门负责数据空间的分配和管理,包括:PFS页面(Page free space):记录一个页面是否已分配、位于混合扩展还是一致扩展以及页面上还有多少可用空间等信息;GAM页面(Global allocation map)和SGAM页面(Secodary global allocation map):用来记录空闲的扩展或含有空闲页面的混合扩展的位置。SQLS综合利用这三种类型的页面文件

在必要时为数据表创建新空间;数据页或索引页则专门保存数据及索引信息,SQLS使用4种类型的数据页面来管理表或索引:它们是IAM页、数据页、文本/图像页和索引页。

在WINDOWS 中,我们对文件执行的每一步操作,在磁盘上的物理位置只有系统(system)才知道;SQL SERVER沿袭了这种工作方式,在插入数据的过程中,不但每个字段值在数据页面中的保存位置是随机的,而且每个数据页面在“堆”中的排列位置也只有系统(system)才知道。这是为什么呢?众所周知,OS 之所以能管理DISK,是因为在系统启动时首先加载了文件分配表:FAT(File Allocation Table),正是由它管理文件系统并记录对文件的一切操作,系统才得以正常运行;同理,作为管理系统级的SQL

SERVER,也有这样一张类似FAT的表存在,它就是索引分布映像页:IAM(Index Allocation Map)。

IAM的存在,使SQLS对数据表的物理管理有了可能。

IAM 页从混合扩展中分配,记录了8个初始页面的位置和该扩展区的位置,每个IAM页面能管理512,000个数据页面,如

果数据量太大,SQLS也可以增加更多的IAM页,可以位于文件的任何位置。第一个IAM页被称为FirstIAM,其中记录了以

后的IAM页的位置。

数据页和文本/图像页互反,前者保存非文本/图像类型的数据,因为它们都不超过8K的容量,后者则只保存超过8K容

量的文本或图像类型数据。而索引页顾名思义,保存的是与索引结构相关的数据信息。了解页面的问题有助我们下

一步准确理解SQLS维护索引的方式,如页拆分、填充因子等。

二、索引的基本概念

什么是索引呢?索引是一种特殊类型的数据库对象,它与表有着密切的联系。

索引是为检索而存在的。如一些书籍的末尾就专门附有索引,指明了某个关键字在正文中的出现的页码位置,方便我们查找,但大多数的书籍只有目录,目录不是索引,只是书中内容的排序,并不提供真正的检索功能。可见建立索引要单独占用空间;索引也并不是必须要建立的,它们只是为更好、更快的检索和定位关键字而存在。

再进一步说,我们要在图书馆中查阅图书,该怎么办呢?图书馆的前台有很多叫做索引卡片柜的小柜子,里面分了若干的类别供我们检索图书,比如你可以用书名的笔画顺序或者拼音顺序作为查找的依据,你还可以从作者名的笔画顺序或拼音顺序去查询想要的图书,反正有许多检索方式,但有一点很明白,书库中的书并没有按照这些卡片柜中的顺序排列——虽然理论上可以这样做,事实上,所有图书的脊背上都人工的粘贴了一个特定的编号①,它们是以这个顺序在排列。索引卡片中并没有指明这本书摆放在书库中的第几个书架的第几本,仅仅指明了这个特定的编号。管理员则根据这一编号将请求的图书返回到读者手中。这是很形象的例子,以下的讲解将会反复用到它。

SQLS 在安装完成之后,安装程序会自动创建master、model、tempdb等几个特殊的系统数据库,其中master是SQLS的

主数据库,用于保存和管理其它系统数据库、用户数据库以及SQLS的系统信息,它在SQLS中的地位与WINDOWS下的注册表相当。

master中有一个名为sysindexes的系统表,专门管理索引。SQLS查询数据表的操作都必须用到它,毫无疑义,它是本文主角之一。查看一张表的索引属性,可以在查询分析器中使用以下命令:select * from sysindexes where id=object_id(‘tablename’);而要查看表的索引所占空间的大小,可以使用系统存储过程命令:sp_spaceused tablename,其中参数tablename为被索引的表名。

三、平衡树

如果你通过书后的索引知道了一个关键字所在的页码,你有可能通过随机的翻寻,最终到达正确的页码。但更科学更快捷的方法是:首先把书翻到大概二分之一的位置,如果要找的页码比该页的页码小,就把书向前翻到四分之一处,否则,就把书向后翻到四分之三的地方,依此类推,把书页续分成更小的部分,直至正确的页码。这叫“两分法”,微软在官方教程MOC里另有一种说法:叫B树(B-Tree,Balance Tree),即平衡树。

一个表索引由若干页面组成,这些页面构成了一个树形结构。B 树由“根”(root)开始,称为根级节点,它通过指向另外两个页,把一个表的记录从逻辑上分成两个部分:“枝”—--非叶级节点(Non-Leaf Level);而非叶级节点又分别指向更小的部分:“叶”——叶级节点(Leaf Level)。根节点、非叶级节点和叶级节点都位于索引页中,统称为索引节点,属于索引页的范筹。这些“枝”、“叶”最终指向了具体的数据页(Page)。在根级节点和叶级节点之间的叶又叫数据中间页。

“根”(root)对应了sysindexes表的Root字段,其中记载了非叶级节点的物理位置(即指针);非叶级节点位于根

节点和叶节点之间,记载了指向叶级节点的指针;而叶级节点则最终指向数据页。这就是“平衡树”。

四、聚集索引和非聚集索引

从形式上而言,索引分为聚集索引(Clustered Indexes)和非聚集索引(NonClustered Indexes)。

聚集索引相当于书籍脊背上那个特定的编号。如果对一张表建立了聚集索引,其索引页中就包含着建立索引的列的值(下称索引键值),那么表中的记录将按照该索引键值进行排序。比如,我们如果在“姓名”这一字段上建立了聚集索引,则表中的记录将按照姓名进行排列;如果建立了聚集索引的列是数值类型的,那么记录将按照该键值的数值大小来进行排列。

非聚集索引用于指定数据的逻辑顺序,也就是说,表中的数据并没有按照索引键值指定的顺序排列,而仍然按照插入记录时的顺序存放。其索引页中包含着索引键值和它所指向该行记录在数据页中的物理位置,叫做行定位符(RID:Row ID)。好似书后面的的索引表,索引表中的顺序与实际的页码顺序也是不一致的。而且一本书也许有多个索引。比如主题索引和作者索引。

SQL Server在默认的情况下建立的索引是非聚集索引,由于非聚集索引不对表中的数据进行重组,而只是存储索引键

值并用一个指针指向数据所在的页面。一个表如果没有聚集索引时,理论上可以建立249个非聚集索引。每个非聚集索引提供访问数据的不同排序顺序。

五、数据是怎样被访问的

若能真正理解了以上索引的基础知识,那么再回头来看索引的工作原理就简单和轻松多了。

(一)SQLS怎样访问没有建立任何索引数据表:

Heap 译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没地有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”,可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找,运气好的话,在第一个书架的第一本书就找到了,运气不好的话,要到最后一个书架的最后一本书才找到。

SQLS 在接到查询请求的时候,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链——也就是所有数据页集合。这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。

可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。

(二)SQLS怎样访问建立了非聚集索引的数据表:

如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行。每一个RID由文件ID、页编号和在页中行的编号组成。当INDID 的值在2-250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。

例如:假定在Lastname上建立了非聚集索引,则执行Select * From Member Where Lastname=’Ota’时,查询过程是:

①SQLS 查询INDID值为2;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;③仅在叶级页面的第61 页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第707页的第4行,N表示文件的ID值,与数据无关;④根据上述信息,SQLS立马在堆的第 707页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。

在谈到索引基本概念的时候,我们就提到了这种方式:

图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等等,但不同之处有二:① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。(可以想象成数是杂乱无章的摆放)

显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。

(三)SQLS怎样访问建立了聚集索引的数据表:

在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。

查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例:假定在Lastname字段上建立了聚集索引,则执行Select * From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;④将该记录返回客户端。

这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表

中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相

当于源表120%的附加空间,以存放源表的副本和索引中间页!

难道鱼和熊掌就不能兼顾了吗?办法是有的。

(四)SQLS怎样访问既有聚集索引、又有非聚集索引的数据表:

如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索,

就像在图书馆中,前台卡片柜中的可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不

是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是

最为科学的检索方法。

也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有

非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。

假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select * From Member Where Firstname=’

Mike’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最

接近Mike的值“Jose”条目;③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;④

根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;⑤将该记录返

回客户端。

这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS 只负责对聚集

索引的健值驾以维护,而不必考虑非聚集索引,只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的

字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既

享受了索引带来的灵活与快捷,又相对规避了维护索引所导致的大量的额外资源消耗。

六、索引的优点和不足

索引有一些先天不足:1:建立索引,系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引。2:更新数据的时

候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性——这就如同图书馆要有专门的

位置来摆放索引柜,并且每当库存图书发生变化时都需要有人将索引卡片重整以保持索引与库存的一致。

当然建立索引的优点也是显而易见的:在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询

、对结果进行排序、分组的操作效率。

实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时

比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑

型的字段,如男或女(是或否)等。

综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要

在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很

重要的指标。

上期,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降

低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方

面对索引进行管理与优化?以下从六个方面来回答这些问题:

一.页分裂

微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆

分):

1.有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定;

2.只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于当前

页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的

行又被移动了,那么原来的指针将重新指向新的位置;

3.如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂

无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页

。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,不得

不停止SQLS的运行并重建索引。

二.填充因子

然而在“混沌之初”,就可以在一定程度上避免不愉快出现,在创建索引时,可以为这个索引指定一个填充因子,

以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100

的百分比数值,设为100时表示将数据页填满,只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则

数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空

间。

填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,

如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进

行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空

闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。

反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的

值为50时,数据库的读取性能会降低两倍。所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这

些数据进行哪些更改时,设置填充因子才有意义。

三.两道数学题

假定数据库设计没有问题,那么是否像上篇分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“

最高指示”用索引处理每一个提交的查询呢?答案是否定的。

“数据是怎样被访问的”一文中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较。实际上,SQLS

几乎完全是“自主”的决定是否使用索引或使用哪一个索引

这是怎么回事呢?

让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引

,那么该记录对应的索引大小只有10 字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页

面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条

记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条 ×1000字节/8K字节

=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页

面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。

然而有时用索引比不用索引还快。

同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面

;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果

去对应数据页面,由于是检索全部数据,所以需要再访问 8000条×1000字节/8K字节=1000个页面将全部数据读取出来

,一共访问了1010个页面,这显然不如不用索引快。

SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何

索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数

据统计信息。

四.统计信息

打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察

“Settings”下的各项复选项,你发现了什么?

从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分

布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。

在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统

计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。

随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数

据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据

更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为

1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义

则可以忽略不计,因此统计信息就不会自动更新。

五.索引的人工维护

上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个

程度时将会影响到索引的使用。这时需要用户自己来维护索引。

随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建

非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有:

1.数据和使用模式大幅度变化;

2.排序的顺序发生改变;

3.要进行大量插入操作或已经完成;

4.使用I/O查询的磁盘读次数比预料的要多;

5.由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算;

6.dbcc检查出索引有问题。

六.索引的使用原则

接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----惟一性索引和复合性索引。

惟一性索引保证在索引列中的全部数据是惟一的,不会包含冗余数据。如果表中已经有一个主键约束或者惟一性约

束,那么当创建表或者修改表时,SQLS自动创建一个惟一性索引。但出于必须保证惟一性,那么应该创建主键约束

或者惟一性键约束,而不是创建一个惟一性索引。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些

列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成

复合索引的列的总长度不能超过900字节;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在

复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最惟一的列,例如在(COL1,COL2)上的索引与

在(COL2, COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语

句中的WHERE子句必须参考复合索引中第一个列。

综上所述,我们总结了如下索引使用原则:

1.逻辑主键使用惟一的成组索引,对系统键(作为存储过程)采用惟一的非成组索引,对任何外键列采用非成组索

引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写;

2.不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间;

3.不要索引常用的小型表;

4.一般不要为小型数据表设置过多的索引,如果经常有插入和删除操作就更不要设置索引,因为SQLS对插入和删除

操作提供的索引维护可能比扫描表空间消耗的时间更多。

查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全

表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生

的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上

的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。

SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句

话,索引就像盐,少则无味多则咸。

 

DBCC DBREINDEX重建索引提高SQL Server性能

大多数SQL Server表需要索引来提高数据的访问速度,如果没有索引,SQL Server 要进行表格扫描读取表中的每一个记录才能找到索要的数据。索引可以分为簇索引和非簇索引,簇索引通过重排表中的数据来提高数据的访问速度,而非簇索引则通过维护表中的数据指针来提高数据的索引。  
1. 索引的体系结构  
为什么要不断的维护表的索引?首先,简单介绍一下索引的体系结构。SQL Server在硬盘中用8KB页面在数据库文件内存放数据。缺省情况下这些页面及其包含的数据是无组织的。为了使混乱变为有序,就要生成索引。生成索引后,就有了索引页和数据页,数据页保存用户写入的数据信息。索引页存放用于检索列的数据值清单(关键字)和索引表中该值所在纪录的地址指针。索引分为簇索引和非簇索引,簇索引实质上是将表中的数据排序,就好像是字典的索引目录。非簇索引不对数据排序,它只保存了数据的指针地址。向一个带簇索引的表中插入数据,当数据页达到100%时,由于页面没有空间插入新的的纪录,这时就会发生分页,SQL Server 将大约一半的数据从满页中移到空页中,从而生成两个半的满页。这样就有大量的数据空间。簇索引是双向链表,在每一页的头部保存了前一页、后一页地址以及分页后数据移动的地址,由于新页可能在数据库文件中的任何地方,因此页面的链接不一定指向磁盘的下一个物理页,链接可能指向了另一个区域,这就形成了分块,从而减慢了系统的速度。对于带簇索引和非簇索引的表来说,非簇索引的关键字是指向簇索引的,而不是指向数据页的本身。  
为了克服数据分块带来的负面影响,需要重构表的索引,这是非常费时的,因此只能在需要时进行。可以通过DBCC SHOWCONTIG来确定是否需要重构表的索引。  
2. DBCC SHOWCONTIG用法  
下面举例来说明DBCC SHOWCONTIG和DBCC REDBINDEX的使用方法。以应用程序中的Employee数据表作为例子,在 SQL Server的Query analyzer输入命令:  
use database_name  
    declare @table_id int  
    set @table_id=object_id('Employee')  
    dbcc showcontig(@table_id)  
输出结果:  
DBCC SHOWCONTIG scanning 'Employee' table...  
    Table: 'Employee' (1195151303); index ID: 1, database ID: 53  
    TABLE level scan performed.  
- Pages Scanned................................: 179  
- Extents Scanned..............................: 24  
- Extent Switches..............................: 24  
- Avg. Pages per Extent........................: 7.5  
- Scan Density [Best Count:Actual Count].......: 92.00% [23:25]  
- Logical Scan Fragmentation ..................: 0.56%  
- Extent Scan Fragmentation ...................: 12.50%  
- Avg. Bytes Free per Page.....................: 552.3  
- Avg. Page Density (full).....................: 93.18%  
    DBCC execution completed. If DBCC printed error messages, contact your system administrator.  
通过分析这些结果可以知道该表的索引是否需要重构。如下描述了每一行的意义:  
信息                                           描述  
Pages Scanned                    表或索引中的长页数  
Extents Scanned                 表或索引中的长区页数  
Extent Switches                  DBCC遍历页时从一个区域到另一个区域的次数  
Avg. Pages per Extent         相关区域中的页数  
Scan Density[Best Count:Actual Count]          
    Best Count是连续链接时的理想区域改变数,Actual Count是实际区域改变数,Scan Density为100%表示没有分块。  
Logical Scan Fragmentation   扫描索引页中失序页的百分比  
Extent Scan Fragmentation    不实际相邻和包含链路中所有链接页的区域数  
Avg. Bytes Free per Page       扫描页面中平均自由字节数  
Avg. Page Density (full)         平均页密度,表示页有多满  
从上面命令的执行结果可以看的出来,Best count为23 而Actual Count为25这表明orders表有分块需要重构表索引。下面通过DBCC DBREINDEX来重构表的簇索引。  
3. DBCC DBREINDEX 用法  
重建指定数据库中表的一个或多个索引。  
语法  
DBCC DBREINDEX  
        (    [ 'database.owner.table_name'      
                [ , index_name  
                    [ , fillfactor ]  
                ]   
            ]   
        )       
参数  
    'database.owner.table_name'  
是要重建其指定的索引的表名。数据库、所有者和表名必须符合标识符的规则。有关更多信息,请参见使用标识符。如果提供 database 或 owner 部分,则必须使用单引号 (') 将整个 database.owner.table_name 括起来。如果只指定 table_name,则不需要单引号。  
index_name  
是要重建的索引名。索引名必须符合标识符的规则。如果未指定 index_name 或指定为 ' ',就要对表的所有索引进行重建。  
fillfactor  
是创建索引时每个索引页上要用于存储数据的空间百分比。fillfactor 替换起始填充因子以作为索引或任何其它重建的非聚集索引(因为已重建聚集索引)的新默认值。如果 fillfactor 为 0,DBCC DBREINDEX 在创建索引时将使用指定的起始 fillfactor。  
同样在Query Analyzer中输入命令:  
dbcc dbreindex('database_name.dbo.Employee','',90)  
然后再用DBCC SHOWCONTIG查看重构索引后的结果:  
DBCC SHOWCONTIG scanning 'Employee' table...  
    Table: 'Employee' (1195151303); index ID: 1, database ID: 53  
    TABLE level scan performed.  
- Pages Scanned................................: 178  
- Extents Scanned..............................: 23  
- Extent Switches..............................: 22  
- Avg. Pages per Extent........................: 7.7  
- Scan Density [Best Count:Actual Count].......: 100.00% [23:23]  
- Logical Scan Fragmentation ..................: 0.00%  
- Extent Scan Fragmentation ...................: 0.00%  
- Avg. Bytes Free per Page.....................: 509.5  
- Avg. Page Density (full).....................: 93.70%  
    DBCC execution completed. If DBCC printed error messages, contact your system administrator.  
通过结果我们可以看到Scan Denity为100%。  
1.合理使用索引  
      索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:   
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。   
●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。   
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。   
●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。   
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。   
         
      (1)在下面两条select语句中:  
         select * from table1  where  field1<=10000 and field1>=0;  
         select * from table1  where  field1>=0 and field1<=10000;  
         如果数据表中的数据field1都>=0,则第一条select语句要比第二条select语句效率高的多,因为第二条select语句的第一个条件耗费了大量的系统资源。  
   第一个原则:在where子句中应把最具限制性的条件放在最前面。  
   
      (2)在下面的select语句中:  
         select * from tab  where  a=… and b=… and c=…;  
        若有索引index(a,b,c),则where子句中字段的顺序应和索引中字段顺序一致。  
   第二个原则:where子句中字段的顺序应和索引中字段顺序一致。  
   
以下假设在field1上有唯一索引I1,在field2上有非唯一索引I2。  
(3) select field3,field4 from tb where field1='sdf'        快  
    select * from tb where field1='sdf'      慢,  
      因为后者在索引扫描后要多一步ROWID表访问。  
   
      (4) select field3,field4 from tb where field1>='sdf'        快  
select field3,field4 from tb where field1>'sdf'        慢  
      因为前者可以迅速定位索引。  
   
      (5) select field3,field4 from tb where field2 like 'R%'    快  
    select field3,field4 from tb where field2 like '%R'    慢,  
    因为后者不使用索引。  
   
      (6) 使用函数如:  
select field3,field4 from tb where upper(field2)='RMN'不使用索引。  
      如果一个表有两万条记录,建议不使用函数;如果一个表有五万条以上记录,严格禁止使用函数!两万条记录以下没有限制。  
   
      (7) 空值不在索引中存储,所以  
    select field3,field4 from tb where field2 is[not] null不使用索引。  
   
      (8) 不等式如  
    select field3,field4 from tb where field2!='TOM'不使用索引。  
    相似地,  
    select field3,field4 from tb where field2 not in('M','P')不使用索引。  
   
      (9) 多列索引,只有当查询中索引首列被用于条件时,索引才能被使用。  
   
      (10)  MAX,MIN等函数,如  
Select max(field2) from tb使用索引。所以,如果需要对字段取max,min,sum等,应该加索引。  
      一次只使用一个聚集函数,如:  
select “min”=min(field1), “max”=max(field1)  from tb        
不如:select “min”=(select min(field1) from tb) , “max”=(select max(field1) from tb)      
         
      (11) 重复值过多的索引不会被查询优化器使用。而且因为建了索引,修改该字段值时还要修改索引,所以更新该字段的操作比没有索引更慢。  
   
      (12) 索引值过大(如在一个char(40)的字段上建索引),会造成大量的I/O开销(甚至会超过表扫描的I/O开销)。因此,尽量使用整数索引。 Sp_estspace可以计算表和索引的开销。  
   
      (13) 对于多列索引,order by的顺序必须和索引的字段顺序一致。  
   
      (14) 在sybase中,如果order by的字段组成一个簇索引,那么无须做order by。记录的排列顺序是与簇索引一致的。

SQL索引工作原理的更多相关文章

  1. MySQL/MariaDB数据库的索引工作原理和优化

    MySQL/MariaDB数据库的索引工作原理和优化 作者:尹正杰  版权声明:原创作品,谢绝转载!否则将追究法律责任. 实际工作中索引这个技术是影响服务器性能一个非常重要的指标,因此我们得花时间去了 ...

  2. Ceph对象存储网关中的索引工作原理<转>

    Ceph 对象存储网关允许你通过 Swift 及 S3 API 访问 Ceph .它将这些 API 请求转化为 librados 请求.Librados 是一个非常出色的对象存储(库)但是它无法高效的 ...

  3. mysql索引工作原理、分类

    一.概述 在mysql中,索引(index)又叫键(key),它是存储引擎用于快速找到所需记录的一种数据结构.在越来越大的表中,索引是对查询性能优化最有效的手段,索引对性能影响非常关键.另外,mysq ...

  4. mybatis——mybatis打印sql 接口工作原理

    https://blog.csdn.net/Lxinccode/article/details/79218566 接口工作原理: Dao接口即Mapper接口.接口的全限名,就是映射文件中的names ...

  5. MySQL:索引工作原理

    索引查找:通过索引键找到索引的叶子节点,再通过叶子节点的标记快速找到表中对应的行数据,再返回指定的列 索引找查是通过索引键定先位到一块局部区域,再开始扫描匹配的数据的. 为什么需要索引(Why is ...

  6. MySQL-索引工作原理及使用注意事项

    1.为什么需要索引(Why is it needed)? 当数据保存在磁盘类存储介质上时,它是作为数据块存放.这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性.硬盘数据块存储结构类似于链表 ...

  7. MySQL索引工作原理

    为什么需要索引(Why is it needed)?当数据保存在磁盘类存储介质上时,它是作为数据块存放.这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性.硬盘数据块存储结构类似于链表,都包 ...

  8. SQL中索引的原理

    (一)深入浅出理解索引结构         实际上,您可以把索引理解为一种特殊的目录.微软的SQL   SERVER提供了两种索引:聚集索引(clustered   index,也称聚类索引.簇集索引 ...

  9. 数据库SQL SELECT查询的工作原理

    一般开发员只会应用SQL的四条经典语句:select,insert,delete,update.但是我从来没有研究过它们的工作原理,这篇我想说一说select在数据库中的工作原理. B/S架构中最经典 ...

随机推荐

  1. UI中各种手势的使用点击,捏合,清扫,旋转,平移,边缘移动,长按

    #import "RootViewController.h" @interface RootViewController (){    UIImageView *imageView ...

  2. Python菜鸟之路:JavaScript基础

    前言 JavaScript 是属于网络的脚本语言,被数百万计的网页用来改进设计.验证表单.检测浏览器.创建cookies,以及更多的应用. 编写 1. 存在形式 方式一:存在js文件中,即写入js文件 ...

  3. 运行 Tomcat, 在 Intellij IDEA 控制台输出中文乱码的解决方法

    打开 Run/Debug Configurations → Tomcat Server → 要运行的 Tomcat → Server 页签,在 VM options 中输入: -Dfile.encod ...

  4. 关于“Cannot find any provider supporting AES/ECB/PKCS7Padding”问题的解决方案

    出现这个问题的原因是:java自带的是PKCS5Padding填充,不支持PKCS7Padding填充 参考:https://stackoverflow.com/questions/20770072/ ...

  5. Version 1.5 of the JVM is not suitable for this product.Version:1.6 or greater is required

    近期在公司涉及到了服务器等的扩展,smartfoxserver扩展使用的Eclipse,尽管没学过java.可是咱毕竟是C++起价的,其它语言看看也就会了,项目依然做着,近期看到某同学有一些java的 ...

  6. 《Python数据分析》笔记1 ——Numpy

    Numpy数组 1.Numpy数组对象 Numpy中的多维数组称为ndarray,他有两个组成部分. 1.数据本身 2.描述数据的元数据 2.Numpy的数值类型 bool: 布尔型 inti:其长度 ...

  7. boost之智能指针

    内存问题永远是c++中讨论的重要话题 1.c98 auto_ptr的实现,auto_ptr的特点是始终只保持一个指针指向对象,若经过赋值或者拷贝之后原指针失效 #include <iostrea ...

  8. random模块(随机数库)

    random random.random random.random()用于生成一个0到1的随机浮点数: 0 <= n < 1.0 random.uniform random.unifor ...

  9. Kafka高可用的保证

    zookeeper作为去中心化的集群模式,消费者需要知道现在那些生产者(对于消费者而言,kafka就是生产者)是可用的.    如果没有zookeeper每次消费者在消费之前都去尝试连接生产者测试下是 ...

  10. knockout注释标签----逻辑判断(学习笔记,欢迎拍砖)

    使用knockout绑定数据时,需要进行判断处理 <!-- ko if:$root.ifHaveVideo($data) --> 这里不是被注释掉的代码 是逻辑判断代码 有效的 <d ...