上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”。本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的 1 号顶点到 2、3、4、5、6 号顶点的最短路径。

与 Floyd-Warshall 算法一样这里仍然使用二维数组 e 来存储顶点之间边的关系,初始值如下。

我们还需要用一个一维数组 dis 来存储 1 号顶点到其余各个顶点的初始路程,如下。

我们将此时 dis 数组中的值称为最短路的“估计值”。

既然是求 1 号顶点到其余各个顶点的最短路程,那就先找一个离 1 号顶点最近的顶点。通过数组 dis 可知当前离 1 号顶点最近是 2 号顶点。当选择了 2 号顶点后,dis[2]的值就已经从“估计值”变为了“确定值”,即 1 号顶点到 2 号顶点的最短路程就是当前 dis[2]值。为什么呢?你想啊,目前离 1 号顶点最近的是 2 号顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 1 号顶点到 2 号顶点的路程进一步缩短了。因为 1 号顶点到其它顶点的路程肯定没有 1 号到 2 号顶点短,对吧 O(∩_∩)O~

既然选了 2 号顶点,接下来再来看 2 号顶点有哪些出边呢。有 2->3 和 2->4 这两条边。先讨论通过 2->3 这条边能否让 1 号顶点到 3 号顶点的路程变短。也就是说现在来比较 dis[3]和 dis[2]+e[2][3]的大小。其中 dis[3]表示 1 号顶点到 3 号顶点的路程。dis[2]+e[2][3]中 dis[2]表示 1 号顶点到 2 号顶点的路程,e[2][3]表示 2->3 这条边。所以 dis[2]+e[2][3]就表示从 1 号顶点先到 2 号顶点,再通过 2->3 这条边,到达 3 号顶点的路程。

我们发现 dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此 dis[3]要更新为 10。这个过程有个专业术语叫做“松弛”。即 1 号顶点到 3 号顶点的路程即 dis[3],通过 2->3 这条边松弛成功。这便是 Dijkstra 算法的主要思想:通过“边”来松弛 1 号顶点到其余各个顶点的路程。

同理通过 2->4(e[2][4]),可以将 dis[4]的值从 ∞ 松弛为 4(dis[4]初始为 ∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此 dis[4]要更新为 4)。

刚才我们对 2 号顶点所有的出边进行了松弛。松弛完毕之后 dis 数组为:

接下来,继续在剩下的 3、4、5 和 6 号顶点中,选出离 1 号顶点最近的顶点。通过上面更新过 dis 数组,当前离 1 号顶点最近是 4 号顶点。此时,dis[4]的值已经从“估计值”变为了“确定值”。下面继续对 4 号顶点的所有出边(4->3,4->5 和 4->6)用刚才的方法进行松弛。松弛完毕之后 dis 数组为:

继续在剩下的 3、5 和 6 号顶点中,选出离 1 号顶点最近的顶点,这次选择 3 号顶点。此时,dis[3]的值已经从“估计值”变为了“确定值”。对 3 号顶点的所有出边(3->5)进行松弛。松弛完毕之后 dis 数组为:

继续在剩下的 5 和 6 号顶点中,选出离 1 号顶点最近的顶点,这次选择 5 号顶点。此时,dis[5]的值已经从“估计值”变为了“确定值”。对5号顶点的所有出边(5->4)进行松弛。松弛完毕之后 dis 数组为:

最后对 6 号顶点所有点出边进行松弛。因为这个例子中 6 号顶点没有出边,因此不用处理。到此,dis 数组中所有的值都已经从“估计值”变为了“确定值”。

最终 dis 数组如下,这便是 1 号顶点到其余各个顶点的最短路径。

OK,现在来总结一下刚才的算法。算法的基本思想是:每次找到离源点(上面例子的源点就是 1 号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。基本步骤如下:

  • 将所有的顶点分为两部分:已知最短路程的顶点集合 P 和未知最短路径的顶点集合 Q。最开始,已知最短路径的顶点集合 P 中只有源点一个顶点。我们这里用一个 book[ i ]数组来记录哪些点在集合 P 中。例如对于某个顶点 i,如果 book[ i ]为 1 则表示这个顶点在集合 P 中,如果 book[ i ]为 0 则表示这个顶点在集合 Q 中。
  • 设置源点 s 到自己的最短路径为 0 即 dis=0。若存在源点有能直接到达的顶点 i,则把 dis[ i ]设为 e[s][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为 ∞。
  • 在集合 Q 的所有顶点中选择一个离源点 s 最近的顶点 u(即 dis[u]最小)加入到集合 P。并考察所有以点 u 为起点的边,对每一条边进行松弛操作。例如存在一条从 u 到 v 的边,那么可以通过将边 u->v 添加到尾部来拓展一条从 s 到 v 的路径,这条路径的长度是 dis[u]+e[u][v]。如果这个值比目前已知的 dis[v]的值要小,我们可以用新值来替代当前 dis[v]中的值。
  • 重复第 3 步,如果集合 Q 为空,算法结束。最终 dis 数组中的值就是源点到所有顶点的最短路径。

Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)的更多相关文章

  1. Dijkstra最短路算法

    Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...

  2. 【坐在马桶上看算法】算法7:Dijkstra最短路算法

           上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径 ...

  3. 如何在 Java 中实现 Dijkstra 最短路算法

    定义 最短路问题的定义为:设 \(G=(V,E)\) 为连通图,图中各边 \((v_i,v_j)\) 有权 \(l_{ij}\) (\(l_{ij}=\infty\) 表示 \(v_i,v_j\) 间 ...

  4. 【啊哈!算法】算法7:Dijkstra最短路算法

    上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图 ...

  5. 对于dijkstra最短路算法的复习

    好久没有看图论了,就从最短路算法开始了. dijkstra算法的本质是贪心.只适用于不含负权的图中.因为出现负权的话,贪心会出错. 一般来说,我们用堆(优先队列)来优化,将它O(n2)的复杂度优化为O ...

  6. dijkstra 最短路算法

    最朴素的做法o(V*V/2+2E)~O(V^2)#include<iostream>using namespace std;#include<vector>#include&l ...

  7. dijkstra最短路算法(堆优化)

    这个算法不能处理负边情况,有负边,请转到Floyd算法或SPFA算法(SPFA不能处理负环,但能判断负环) SPFA(SLF优化):https://www.cnblogs.com/yifan0305/ ...

  8. python dijkstra 最短路算法示意代码

    def dijkstra(graph, from_node, to_node): q, seen = [(0, from_node, [])], set() while q: cost, node, ...

  9. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

随机推荐

  1. 【我所理解的Cocos2d-x】第六章 精灵Sprite 读书笔记

    简介: 精灵是2D游戏里最重要的元素.游戏场景中大部分可见的元素都直接或间接地与精灵相关. 在Cococs2d-xz中,精灵使用Sprite表示,它将一张纹理的一部分或者全部的矩形区域绘制在屏幕上. ...

  2. 在C#中使用C++编写的类

    现在在Windows下的应用程序开发,VS.Net占据了绝大多数的份额.因此很多以前搞VC++开发的人都转向用更强大的VS.Net.在这种情况下,有很多开发人员就面临了如何在C#中使用C++开发好的类 ...

  3. Postgres 9.4 feature highlight: REPLICA IDENTITY and logical replication

    Among the many things to say about logical replication features added in PostgreSQL 9.4, REPLICA IDE ...

  4. 基于MVC4+EasyUI的Web开发框架形成之旅--总体介绍

    最近花了很多时间在重构和进一步提炼Winform开发框架的工作上,加上时不时有一些项目的开发工作,我博客里面介绍Web开发框架的文章比较少,其实以前在单位工作,80%的时间是做Web开发的,很早就形成 ...

  5. Unity Shader——Writing Surface Shaders(1)——Surface Shader Examples

    这里有Surface Shader的一些例子.下面的这些例子关注使用内建的光照模型:关于如何使用自定义光照模型的例子参见Surface Shader Lighting Examples. 简单 我们将 ...

  6. TopShelf&Quartz.Net实现多任务的值守

    很多时候,我们需要为一个服务器安装一堆的服务,来监控各种数据. 在windows服务器里,我们会部署专门的Quartz.Net多任务轮询服务. 同时,我们针对不同的任务制作专门的***Job.dll, ...

  7. LeetCode "Valid Perfect Square"

    Typical binary search.. but take care of data overflow if you are using C++ class Solution { public: ...

  8. Hadoop的管理目录

    HDFS文件结构 1.NameNode的文件结构,NameNode会创建VERSION.edits.fsimage.fstime文件目录.其中dfs.name.dir属性是一个目录列表,是每个目录的镜 ...

  9. String字符串

    主要来源:http://www.cnblogs.com/devinzhang/archive/2012/01/25/2329463.html http://blog.csdn.net/qh_java/ ...

  10. mysql 联合索引(转)

    http://blog.csdn.net/lmh12506/article/details/8879916 mysql 联合索引详解 联合索引又叫复合索引.对于复合索引:Mysql从左到右的使用索引中 ...