NYOJ题目74小学生算术
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAI0CAIAAACRUHjwAAAgAElEQVR4nO3dO3LbyroG0DsJ5RqIYg7EKibKNAInTKRIuRNVcQQK5HLKfAeucmJlzByeIfAGIIDuRjceUouS6bXKdc4WCeIN9IcfTfD/DgAAb/Z/Hz0DAMA5ECkAgApECgCgApECAKhApAAAKhApAIAKRAoAoAKRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKhApAAAKhApAIAKRAr4q7zc311e3F5e3D38Hh/w5004zNNj/JGfNxe3N0+TU/t5c3F7eXF7ef1z+Sz9ebi6vby4Xd3/mZzM4XB4vr69vLi9vHh8Hs488HcQKeCvMi9StFGgaaF//1g1f179eDkcDn37PWjvj0N2I58TKbpp9f9W93/6iUb/irMdRIpjFrmcFXqAz0OkgL/KkipFECOeHvtGuv3vYVBoR95FjelI0aWTOFL87GLB8khxCOOIVAF/D5EC/iqTkaKLBXP/taWLQ1AemPzXZI5gZtrPXv8MAsHjczdMP5W8+MbHYfatGeDzECngczs2yW2dII0Uv3+s4vsXr48UXfVibqQ41jDCeLG6/vlyOESB4JgwuqywbEJz4gjwOYgU8Lm1l+/HDBFHivjuxiEcIGjCx8d8/GyUD1pTNz6eHldXsxNMNxKRAs6TSAGfWhoakipFV5Po7hG8LlIkwSWd+kj3zGM+GJtcUmgpzokAAX83kQI+s/aCviseZG985O6MPD7nv3PR1wyCSBH0hIjMjxRLqhRTY9CFAv5OIgV8YuUiRFdO6PpUDuoEU5EiGjh9cEXjBFWKXJ9QhQr4K4kU8Hll4sLwGx/dXYPJi/u+52amzf75UHyYxGiT/7YqRfd9kIf2Gx8318MuHcBfQaSAT2twU+OQ/RJp+TkTmVGNJ4/XR4pXVSmCp2UEXyI9lkbc/oC/jUgBn9Xwrsch/1yK8FmZC54t0f4beWrWe/aliANT+FyK2Y/zAj4VkQI+qXwniWxzG9z7OHmkiOc2vmFR/pmP+HFYh/RRV91SSBXwFxEp4BN7vk77PeSv4J8eJ7412jbhC+8mjEeKzK97TP67eQrzxLBHSPT0zOk7NcAnIlLAX+WVNwXC3/hY4D0iRT4rDCKFX/qAv45IAX+VwjOpxgeecY9j6RMtw1ENfum0Vbrx8efhKk0JmUhxHPP0M7uAz0GkgL/AoB4w88kNcVAY+2bmayNF+JMig1pCuS/FQD5SAH8TkQL+BnG94ZN1Wvz9Y5W/NyFSwD9FpAAAKhApAIAKRAoAoAKRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqECn49Hab1Xq77/7cb9ft37vNKme93TeDdTa76M/u1XCcm91hv12HUwrnoB/2H/Ca5S2tu3TEIwPZZPCXEyn4BOJokDYRmXZopGlq25hjk9O+0P0ZjKL7u30zbZ/aYV7RPgW/ojn4Jc/jY6oHD59e+vq7ea9IMdgIhbc/ZpM1Mj9/WvqBlcLrxU0/44dadpswNjUHxnq7H4Tn6fQGH0Gk4BMIEsJUfphsKtJIcfzA2CVv7r32RP7a9unpMfhhi583/e9c/LyJ26rX/vd7mrW8hRJR2uxlV25+6A/eZMefQBv+fkpptRden7XpC8JIsdv0CxxHjd1GqOBzEin4BNJIsS3f0OiaimGj0r0eRIruInbkkref+tJL3v12Pe/c/nzdXq0+PYbXpi/3d698PVl9q822Wx/N7YCkDY4SwFRjOzdShIs+vD21oLTUfeYjN1nxx88WRopYv+kXRYr9dp2GiPimj/s6fEYiBZ/Aa6oUSVsyeH2/XTftbJ9ASlX0/f44nneKFE+P3bVv0MB0bz0+L3890pXH21mK/miXILjC30zM8isiRbp+B5GiGWCs98sHb7KX+7vCT8a/IVIEm35JpBiUIaJIEfQmgs9FpOATGPSliFqTYqSYUaWYrqKXC/Pr7faNN+Zf7u+SW+bvFimiasSg8VnYCC2PFFGSOb6Q9qnNjDL+2Mdusufr28uru6AbRLee4z4Qpb4RcfVouOnHh+9X6mq9HtYg0iimRMHnJFLwCWSqFEEb9IYqRd+4HP+MWppBs1O9r1/j949Ve0P9gyJF3wrPChZLI8VxMmEFIFqV2dJA2FWgH+zjNtnz9SD8ZYoWP2/yaaDwerDpZw3fFJzW63TVuPHB30Gk4BPI3/gIWoc3Roq461/fxh7Pyvmr3qA1e/M3Erui+kdFing5p3LFkkjRjDTushF/uXO3Wa3X63IXmW6ePnaTpav6949Vpqtm8f5IndfbrZeGsOSbIIO/4XMQKfgEXtmXIlcUjyJF8EZf9TjWkHP9ANKegdUiRX/J+27dM2dEivJrwxHO/8bHYFxtl4jmjWZcU5u1++DHbbK0jY+6QZQHm3q9UO2YiBSHJKolEUKZgk9KpOATGPSlSN+drlJ0BlWK7uXuPv0mucQrtk/BHCzs6/d8HXTEi75K8A5fIp3Tl2ITrsGp1ug13/hIDItI8yLFx22y+Auffx6ujkWLl/u7/s5FcCOj9Hpp05eGT1dKUvHpglny/Q+Jgs9IpOATeE2VYmpcmfYpyCvRSTlun47l+UzbNjDSPj09hg81SnLA83X+0VVLX+8XeapKEYa2WQ+5/CSR4pSb7HCIelB21aDSpqz1erJShqtgvd0n3TN934NPSqTgswrOovFN5WxTMRh6eNWauwMw6B8YDZR5vMM/4Q2Rot8Oaa/JsC9nvmG0yeAvJ1IAiTf3HQH+SSIFkBApgNcQKQCACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKhApIB/w/FhlDOeOeEnJIBXESngHIU/CpH8RPzwd8OSX5DIel3EeL7O/TgWcJ5ECjhrx6pEPjX0IeOYGJLf1XjDYzTbnzoTKeDfIVLAOdptul9Pa3/I8hgOMr8K3/58+Ijcb19O/KrnofmJcJEC/hkiBZylY3I4poV8Ygh+Uf41VQqRAoiIFHCm+jSx2QXhoFCl6CJFlT4URyIF/FNECjhXYRVhZqSoTKSAf4pIAWcr+G5HtnvmMVrst+vVZlf+2sfr44ZIAf8UkQLOVRMSmtwwVqWIvl8avbfbTHSWmCBSwD9FpIDz1MSDpgIxGiniHLHfrlfr7X5G30vdM4GYSAHnqI0S0ddIs/c0ksrEfruee8djNFJ0z6Vo/t08VVw44HMSKeAMDTpcFntgNm/0iSP5Dmmdb34A/wSRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKhApAAAKhApAIAKRAoAoAKRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKhApAAAKhApAIAKRAoAoILxSPH0eHlxe3n9s/37583F7eXF43P630cv93fBwMOR/LyJhwcAzkXFSNEMfHF785QfyfP17eXF7eXF3cPvmksAAHwCMyPF7x+riyYQ5P81MeLl/u5yULoIc8nL/Z1IAQDnqBgpmiJE++/qx0v/YvHGx+Hw5+Hq9ubpz8v940j+aMcGAJyNqn0pctpoMuxjAQCcj2WRYkRQ1QiGb2+FNH0p3PIAgHM1N1L8ebiacSMjV9VYXd0FA/vGBwCcpWWRoikzBLc8mm6bhUjxfH17efH4nHzjQ0cKADhDcyLFxe3l1ePN0kjR/feg1LG6//POSwUAnFgpUoTfGn1FleL48cfnQ5wz2tGmz64AAP5u79KX4rHpqnmsRsR3Q17u71QpAODsvFdfip83xT6bAMD5ec/umYORAADnqmakCG6OCBAA8G8ZjRTNg6pW93/m9KV4vu4yx+jAumcCwBkqRoouFjQPpwqrFIG+SvHn+fpOUACAf9X4jQ8AgFlECgCgApECAKhApAAAKhApAIAKRAoAoAKRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqmI4U++16tdkddpvV0GaXHz7/TmHk6+0+/+Zu072320SjDN4Z/1zZ5EAzp94s7phwMvvtenrWDrtNbv3NWqw3faB13OTH/zyOY79dx5s12SM2m8Iest+um5Ww2wQ7RrKMwSTzix+vudJ+k53WcD1k1kxmO0YzEc5gJFqq/LtFYx8rbrpkHwr+fPUGTyea7PCD6Sdvjkw381a/SuJ3Riea+fTY6txtSntHbgqDmczsXuMbcnyTDg6dJaON5mPGUdAN0h5G6f/nTe878Y42NqPzznKj4tmZXkvNks3bSNmTS2HTja+HRQuRvPMOZ7+FZh7vS01Fim5igyXNHZ/F9rW0AqZWTtyud4fKervf74cnqmITMjriWQNNTH3udGbtjvv9rm0ZJ2Y5PoRmfGCWcCaTzb7bDM9xxdXevddum3hrD5LZ2EE1XJbcebp7rZ3SbrPa7MJtV9w30905OBGvt/vg/ekMGW6KkfN4/NbgHJqcQrpBg62z+HAbFZ1hymPIJorCMh43w/hu2o5jcl0mczkcQzAXpdY2u2elE1wPVuswX7TjmT6i99t1M8q3n7TnHQXH2Wv3/f7i4E2JIokUwyNvYaR4w7lr3lk0uhgqL/pr2qz8W+kboxnuHc5+C8083hcbixTRYTlVpdhtslth/BquHClmnbij82w0q8Ur2HkjXTj1YUsbLv9opEhW62AvK55q19t9PvMUpz1XOI+TB28mUkSNb/NeGC4GDWe5NYnix2Y3tlXCvNdPL/5EIc0MFqSfYmGpstWr/o8kks3ag2ZHimCEXRaqUaXop1Ga5cxxMVzHq8w+HMrNYlNayjS6uZPHvCrFcchM4hwM02/e/gTbr4jJ+DJ1hITXZG8NFXOOguzbmU233u5mnw+Tz66324WRIneWm3/uWlJ7mFvP6Ec8t83q5igsA+Wu8foIl5t8ehKqePZbZNbx/irlSNEdNs0qHKtS9MdeOFRhg0WHb/ef6eE7L/yPb73i6hmPrUunHrwy3BDhjpibqXCFHadamvj4gbfbNIf62/e4RdXDeZFi9DAcrM/srjZnGdoPBoniWKoYXmXmIkVuEQdLFQzdvREkp2Rt165SZK9XKkSK7lyYPzaO8xrtmt2JLinhRjWUzAV0eVvs++JcsxNmVt3MKkVW4bgfP31Ely0Tci1MnLDecDW46OPp+ovXcuaSd9YtpzBLZxd+/lluwblrsMkHSxC1j33TMqxS9DPyijYrPZdFO2ywmtoVMa9Klr7x6rPfIvOO91cZq1JE0x6LFIMPxMdiIvxgfHEwXHNzEtQgVE6cWZNNNHI8vSK/JefRzLVvnzBKkWK3yd7ZmxEpqlQpojGMjCA+ffT3F3KRYjjiZE2OHFRhQ5251Ctf/SUnr/HrgdlVimgTH/e9tFwRtbsj0iumyUF3m77LymZbbuMWbve+AQq2eOY8nUaK9To92/VD5EPB1D7Z71QLj8ngI9E4xoYfND65qWV20eQMlh9Nko+G+84yC46CY7t4bKObnXuzLt61mHc+jFrPbAEoUwQcOcstPnd1G3K93bUXucOdfXakGKy9sZ0ump1kO2drGtmcH9Zq46m9x9lvzNzj/VXGI0XQzGcPzcGu2W3hzAVbP85CcJ+zegYxMr+ay2tkkPnmRfTC1KeMRYr2wBocbIWZKtTZojNk9Lm3RorSZVl64hxWKeITSkn+fJ0cVPvjnejh6aFfBRObb7dZrTebOSs0M8f5KkU75ehEMxJtXtHGl8/yb7mEKE0ss34yK2NYpUhn5zjj++163jpP97FiGFu8xPnZf2OVogsG4UlrePWanCfifTRugyZqH8FuP+8oiP5r093w2OzaxiPZAjPPh9HW2GzmR4riWe59zl1TyfxVbdbgaBw7bezjPiv9+k0W6VRnv6H5x/urjESKXZ9yD+EOGlwL9HvxKoqw48dGMN/xDj2R4ec26CO7Y5e1i7tecfLL4sRxwV4bKYK5HTvbZJJ+po1/pf12vdluN4NrhdIJqH1rcI1Ssmt7kY0d/7tNvJzD5nXWVe9UuC0m5lyk6E7TmTHmuvKNb8RgXZQWK17oYNjsyBfHl3hHbY/J40vhQZnukMkn+nnbbfqTxdhePJjVqWN3hsH5qbAaw5cXVSnSC8ckaAxP88NXlqbMpUdBOQ4Ow+qM8+Fu0xTFRk/xyyPFvHPXdErI7kvB5XB2hUafGWuz0q2XzdXRptjskiJG4ezz7me/wqLPPt5fpRgpuggRnyuCpRhss0E9J3h5WDGMFif8e3JNRyu9+9T0YOl+1E8yN8ezp579ZDlBDc4/2Ugx2Fmye0/msMxuqtc4XtVE9z7y58b4LHBcBTN2ylk5PV24eJWOL+JxdoMr57xw3MHBG535ghruKvulgG5km/6+VXhBGh044XVkbpkLkSJehH7RCqtqgai9TBNhd6SXz6aF/XlOqW3qcBvfwMV3361K0Ux0v103PRyb217tK9mZedW1ZHY000dBZmXmKx39sDPOh8fjpxCAD/GeMe8s9/pz13Dq/XRnSc5o0VYOXh4cpMmiZhrfdB/YH3eQfOnjfc9+o+Yd768yUqU4Tjk9D+a2QlQyis/L4YDZPXHYdOZ3mPnrrzBkFwsnD6GlU+/35XRE8cjjaDgWKYpXqfE+mz8sZ83zhGC+wvZsML7mzWj+oqpa6fCP34tHPX5QLa/D9EMNrvbLu0L7Zq5KUd5p0pN7WE0YzsPiSDEYtkaVIpxCOM9pXSZtNbOb9jWRYjAXhfENhxku/ugmGj3UM61Bbu9ILp+Dw3mzOWGkGDkKyq1O3FQsPR/OjRQzz3JLzl2TYWFqETLnrpltVkG++JCsl7DdHhn2fc9+efOO91eNemmk2G/XTb+wsXVebmJzQ74tKCwdsnakCC9EJz6WbLNypBgtb5VPqYsixehpLt2to8Nv8HpcP1xHVbWRSNHOwSDsTxxU/RoYyyulT48ckunpN3O9kf+rNKPdYsbZIncML48Uu81UlaJwBZY1rwGejBTRZ5ZGitzJYDCRqFmcVaXorxGziWWWoMqVZs78ykkXonqkKB4F+90u/CZptNtkdofqkWLuWW7JuSt3QommGB8sm6CG2BSRppuO2W1WshuMzvPIsfAOZ7/6x/urLIkU4bbftzfhMrOa20XK4//LI8XUpwrBr90fknPa8IJ4cJkRbobXVylGljqd6fiUGp+i0hJiGomKp9lmInPPtdklmX0IlNbDIGqMZYZhpBhpfYKFjGuW0YykJY1xaduQOS9Hc9DO8Lw9d3akKMxTaZXOjBSlS8Nk8Ca/bzbB4o/u4clcju0xg12xUKXIfzr7gfK4X2f+UXDcLfo11e+J6V742khR2O3mn+WWVilmR4poScZ21nS48cOkG9vIHhSdNtPRBWeY9zj7vcfx/ipzI0XSfnTz0C5F5oQ6PtrpLX2UNqPFt8dFu2/hO9CZGZqY+viiJe1JfHR1O1ea38tliChojJUYpue5OIJd1CNiOIJsFE5LNcFKKCWK0bNTusDNTI0OOrJ5BgdZN6KoRU9OfkmUHi7gzCpFuoIWHyzp5MIz0btUKcoXbPkqRbTLZ1bSyHbbtN2mouvs/PiiM/BIpgtmatZJM0hoxWUtf7q0h6RD5N4aWYjMEs07CraDa/Jh+xa2+/PPhzOqFAvOcnmFg6MYKbbxLl44+Ubj7sdTGK4wR3MP1tyOF40t7FtR9exX/3h/lYlIwXkaiyQA8BoiBQBQgUgBAFQgUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABRORIvvgwcJzuDe74pPRoicrZZ+0X3g2WffjErlnh5WeZzb7OU7zH0E648l5o5KHsmdXQbSGRh/zPpi1mY/iHk42+4jAcL63+Qf8ZdZF6ZnKI1PPD9Q9rjVaadmNGj3ctfhUuTcorvfCBOOHCHdPxs7Oee5h1fPGuWivy0y4wmPO0ueltuPOvFTaCGNLMf5o7NL0p6cZj2D+QRaOurzy+hHkn4vZPfax8HDc3CYfmV/4hEYjxeQZOzyCNrvhwZ9rDyaa036g6OAaDDN2/M8//MpDxosy/IWHVzycfWwtxMuXWY8jiaJ9q/B837GfOChkwOj5+f1DdftnVE/89kPu3Bh+Krc/JQ8b322ap+D3ISwfY+IAMmfhymY+IDn5FY9BSGteSX4SYfzJ1OkPWUyPMxw888jkkSVcr8uhYvKHDOL5GcjsqMWBx+Ja+nzu3PpY9IsdpUmMPth7aXSb9/MKU3NXGkut32CA9zQWKaJHkedLE/0vFGXPkmmkyP3s0ODD0a8IzIoUcw79wQ8slGR/5il+yPyCwFKKFOmb6fJ17er4ArWbYDilwoVO4fOJOFIU12Y30sJPgcQhqdsD1ttt6Wc+s5Nryl/JRtpFPwSxOXWVIl5Nwe6Rb/5n/2DEgnH2szg3UkS/ZJL/sYvw+nmkvZ748Zix/XbWUVu4jE8vW0YWeKQBDoPo9FEza6yZ+Zwaz9gFUbmu89YdGt5ZOVIcA8VuM3LGTn9TbqpKMfzZofQY7X9+Jj5ER298zP/FiqUHZTt8qQxznOXCjI1GisF1++BKLDivFhbvuI2auSuforvWOvyhmG6DbDa5cvWcKkV/F2xQghg0oNFI0s2QqdmsktwSlGIyLXWdKkU3L0XTCbHc/M8Z8dxxzqinZG6GJb8SOvxZpWJdLlmMKhfLM6sU0V+DfXy92Yz81m1uRsNRDG7qFrLxiDg212jy55Uk4XMqRor+UGqulsd25f2+cNUwFSnW6/QgDIeIT4IjjqOfaFPbaQZjjE6P4RlhySk7Wei4tDIWKQqLPXyrb8EHlZp4AYcntej6fzjLXSF80MQvuvERzUy2bY/X2tiNj2Mi2fY/hbrfbtb5H0HMRoo3tnnlTRFtzlJlLmn+28GiHSudu1IRrzDOaBmTpJjP9kHBrS8/JLOS1iUKdYrRmx6F7Z8f35wqRV/1aO+F5cecjQLDs0tuMUqz0Rcly0Er3RnH9u9mpF3fpOCIzW7z7FyrU/Dpjd34iM/Y+UpFU2fIW2+3k1WKQ3Jcxg1ye/CVppFr47p8c/xUmnGamvnwhsaia4zw0K4RKQZX+d1JZ+zmz/HV3LVWM2y3TMcVOGhwwi2cu98/p3tm1Gpm1nlmGYtVir7d6RdgFf4e8PAMvwoCyJKzc8nsKkXus/tM859N2k07OZrRxsYZRYpMtS54NSkaxS17cCk/M1JMNGpxOioHlrniMBHsnGGCHM7Qcccv5Z8FqXN2pOj3m+JFS+ZzmbkfW8PVSkTwTkYiRdKYbTbNFeO6OdMfm59BtX6qSpFrmYLWvB/lbrNer1frzSY6iLInkKhB3q5zh3Y8ZHQ2H7bd0ypHisG0ozY2r53ruOxTuBe02zQn2LbZzzV22ZfHqhS7TbSa87PafyZYwokbH5kT5777rkOw4frxn75KUXp1NFJEDevIDjc5zqj4FF0bx0Fj2JIPXzkefXUjRTfmtt/LoGgyQ3K9st5uN+Hm7lLnYIbGj+ruumJV/DJZsTfH2HCbTZDmjxPedz1J82eChbcyRAo+u2KkCIvVm816NFLkTxHx1UW5StFOrj0H9kNu2zvvUb15cAjut+uR7h7t6ShtDZO2Lj33TJ1K3hgpSqWZcJHSU0cuwSWz055L82eqrhZfmvd4wMHUy01tdHYNXw5q7PF+kT83Z94Iss2gkh2FpFyl4hWn33lVisJQQeegUpWia+5GN+fEONtXmo2y366bNrLpUJNs4+HGKt0+qB0pwqWa2BLjo81XKUqRIj54BmNuRlI4D2VGkC5JbmGamegnFUW+tviX3M0JPlheL5lZECn4zEZvfBztR3r/RcfN4JQ3P1Ic4hejpH8YCS2HdKyZkfeHcz9kN+rmAiK9jpqSVCkKDU82UqS3BqL7BvEqH8816cqbKmj0wwyTXCLajiOjjJYlbkNzJ97s6gsWN/nPZLjdsGtNFERzbcfrIsU7VSnmb82ZVYo4vYaHQ7HT4sgdiNES/3Be8tLjLroflolQ5WJAGm9Wq/ayZrxKMdhN0hLB2CwXl7GPau1xmWywqPgZnXGSc2Q8yfzeVgxYi0qp8AFGI0V0e3A3XqUoFGYbsyPF8XP77SZXOUjHEH0m1o88PtmG57C4WV/U+iSRYlYblMsO+7ZL1z7uKzevShGNNl7d+a5pgzN7OVIMzuszzmYjl3GHaPnLkWK/24Xf90nDUP4hSLtNbqTlSFFuVqOFyFhw+i9VKYKpFNfn5DiTDTkY/hVVivit8mCj19XHj6WxuX8zeC36s7DEfdKYV6VIDqPyQgd7+ESkiFJ48M5u+MWm4GZHGK77DwQB8HiW25V6gpQqScsqhXBqxUjRHfB96W5mpDgWoIOdO4rqxUuz41Tjk850pCheO06MPB7poKkqNyvl1iUzE/HZbpAm0hjRFUnTPiTZZcq0S8HdhuTt/q+xGkImoOQWpvi54sVV2pqUqhSH7vTY3MvqLu/7WY/WaVvxz1dpsgs5HiBfUaXITi+NFF3jseuOj93gSJk7zqkM/KpIEU55ZJCxBu9YzZxu2Jr9tNvCs298hFWKbnb6ymNx0unen0Sb/J4zHGG67PGh1EXbaO4yMa2v35SuHbIrY/IEpojBh5u88bHvHymQFPEzLUh6JksvW/NViqgBT+qd7fmm2K5vN+lHurfyxYzJuDAn6I8du+EEJk9wg9H2X24YW+7MuNN7GsHL2ScNZkdeuJTLrvmokj/7TDY+zu3g0m+4qvpbVatV852Urp2ZV6UovT4nSLYLO7Lo3VvxbaDoe7GDyU6sznScpWY9vozPmdfij8tPff5+O2h0i0P2M91Fim3UHHfDDe535Bc9n9+mb3xMvnMcU5zgCxsiP1y8gy2ctioFn8RkpIDzUrwfwmyFGwy8mxpREN6fSAEAVCBSAAAViBQAQAUiBQBQgUgBAFQgUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABSIFAFCBSAEAVCBSAAAViBQAQAUiBQBQgUgBAOne2l8AABlwSURBVFQgUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABaOR4vn69vLi7uF38vLPm4vby4vby+ufxU/+/rHKfBAAOFdjkeLPw9Xt5cXjc/zqy/3dZRMpBm8d/f6xGh8AADg3xUjRliLaf6v7P4fD4fD0eHlxe3n147kJFqVCRZsqjp8CAM7cSJXi6THMBC+//7RBobmj0dQwiqmiLWa4/QEA/4LJSHF1d3lxe/P08+Hq7jKuW/T/rn68ZD4/kTkAgDNSjhQv93eXF3c3102kOLzc3+XDwdNjM8DQ87UeFQDwjyhHiufr28uLx4f7Y6Q49qJo/93c/1hd3D08/VgV6xB9bww9KgDg3I13z2y7YXaRov+PyUgRRRCFCgA4b3O/8XH3cL8oUhw7Utw8df/xrosBAHysqadnvrzuxsdx4MfnQ/+901wXTgDgPCyMFPOqFMcKR1eZaPpp6lEBAOfrHSLF8YseYVkieqAFAHB+FvalmL7xEd7yCByffOX2BwCcp1dXKZqbGr/jSNH2t8h1xvTkKwA4YxUjxVieaMz4CVMA4K+0NFJcP7a/3NFWHY49JNIumXntz4n5TikAnJepSAEAMINIAQBUIFIAABWIFABABSIFAFCBSAEAVCBSAAAViBQAQAUiBQBQgUgBAFQgUgAAFYgUAEAF45Fiv12vt/v4td1mtVptdqXhV4MPJB+dITf2/XY98sayUe428Vymf/fLvds0n0z//wSa5Xrfqe2368GaCXQrZWzDBZ+f3r7Rao73ruy+M3tD7Dbp2AE4sdFIMWhxjq8MX+/tNjPbwaBRyCWX4Zys14VQMXMestljvd3nc0Lz4m6z2uz69/fb9YkSxUQ4e6u08W8Wdb3dduEq2saDzBWM59UrZDjSbGycvSHeeZUBMKEYKZJGZ7OLW/6RFDAWOOIJzI0UXUSYmVdKg7XTOTZmzYwOL60321z42OwGoeT9GrDZwextuk3V/kfXzMft/cwqxSK7zTGcjlQ0sm+XN8SJ1hoAWWNViugSdNCqrDebQhAYuTUy4y5FOs7dJnytcCkah5KRSJGb3m673WXGclzkaBW0b/dD7jZRBonau9w8JMNn12CykO8xiX5CTbveL00ftqIxVq5SLCopzNoQi8cKQF0jkSKoNZdajmxTs9us1uvCqb1vq8JWq28XkkZ9v12v+svm4JPp7MyLFP04k9Z4tzleEoel/lVzI6BtlffbzbqbSL9Cwpv4zajDP7I3VFZhg5hZT+mr1SdRDHabzWa13u4Hm7V2lSJciszGCl+avSGKSwvAaZQjRRwmgkalO4Vn71ccT+qFux9RpAh7/20GdYKkw13c8qSFkGGkSCoRUfu6GzacQXgJp9XM2bEJ3ux2m8FtgWi+oj/yzVu8HNlh0kb2HSYRvjkoR+z2u1Jf2AkTRaggCQWhM9tHtFv9szdEbtkBOKFipIhah/V225/Du6BR+j5I1wjkA0d38z68Tk2CxrBlGL4StpUzqhTD8v7hsN/tgsvfvsWK5zUax7E/Z/RliPqRIv1CyjtEikHuivpStEs/7/s0y5rx3SYOdMmKzn3/ZsaGKA4LwGlMPZciX6UoRYr4hJ4JFXE3wP12vd7uuk6S7SvZK+rxy8839KXIN6zzLrDTaf0tkWK3CRfqkOmeeSj3kyh2rFgkHEvx2yVLNkRmVACc0oxIsVqtVpvNjCpF3JHykGvNui9ZZO4b7LfrcpfPKpEiN9L85MpfoUwX8q+98TFRpYhXQfjHsJ1/TRs+uO3U901Je9PM2xC5ZQfghGZ8iXRelWKkq2Dc5yFsg3I17veOFEknjmzjuN/twi8wDr/3Er8y2d7v+8dWldr7oDNHrntmjUmEwxTa9N1mtd5sBv1Xo+a7fpUiSA5pd8v5GyJdWABObP6Nj7BK0Yi/SVlqxKOOj1N16dNHimID1NdnVt0TscI+F8GiT7b3weszIkX2S6QVJjEc0ViVIl4R/Wp4l0gRzOtgw83cEMmyAnBqSyJF05Ox+R7fOmqGps7jXeQoRYq4CFIaReatud0H++8hTguaz2gyEzd1Rhd/YUO3uH4/ZxLxMMUqRfkbFCMre/ypVfGQweQznSUGm2z+hnDXA+AjTUUK3q7Uz3HMwuvtOZN4zWz8TZQoAD6WSPFZRR0fmLAb1DMAODGRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKhApAAAKhApAIAKRAoAoAKRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKhApAAAKhiNFM/Xt5cXdw+/k5d/3lzcXl7cXl7/HB/3y/3d5cXt5dWPlzfOJADw2Y1Fij8PV7eXF4/P8avHoHCReeuQHVKkAIDzV4wUbSmi/be6/3M4HA5Pj01KeG7iQlyoeL4OhhxGit8/VjOCCADwFxqpUjw9Rvng9582EzS3QpoaRpQqRAoA+FdNRoqru8uL25unnw9Xd5dx3aL/14YGkQIA/lXlSPFyf3d5cXdz3USKw8v9Xb4/5tNjM8BBpACAf1c5Ujxf315ePD7cHyPFsRdF++/m/sfq4u7h6ccquPfRRIqpfyIFAJyf8e6ZbTfMLlL0/5GLFAnf+ACAf8bcb3zcPdyLFABAydTTM1/m3/g4DtDf1xhGiuOdkalnZAEAf5uFkWKsSiFSAMC/S6QAACpY2JfCjQ8AIOfVVYqnw+HQPmpCpACAf139SDHjn0gBAOdmaaS4fjzeB/nd/sZH5tfPi1QpAOBMTUUKAIAZRAoAoAKRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKhApAAAKhApAIAKxiPFfrteb/fxa7vNarXa7MY+ttusBh97X8GM7jaroX52cou0ULx42elFmpU1PVw37G4TreD9dt39nbyVW6b9dj21+vfb9eRGLIx9zOm3OwCfx2ikCNuy8JXh64NWNmniZrZerxZHimRqUZs4q4GMm/90+NGWc9b4+4EKKyeaxFSkGM7PfrsuJoYmTozGrplLlL6RjTsA/CuKkSK5qN7s4iYkaU4+LlIkLeR6u10YKZIFXW/30QJk8kP40oLaw+x6RjCR8kf6mdptjilvctDdZpVLDvm6U7eU3RrLr4r2k4U5ULYA+FeMVSmiq85B47bebNZhYzUrUuw2q9Vm2zU+m13QEuViRzJ8sX2KM0C+Ycu0eZtdvJRt65lGim2+ZW/a/HimBpGlX/x+2GyVoniRP1qlmHGbo1stXTLoRlEIGdE0gyXab9eDwXebduUOxnOK+hQAn8VIpNhtVptd0/6UWruukZy6AA8jRdCuJn8MpxE1ecXWM2rpJm58hBffsyPF1I2PbvHX2912HVYX8qWc0UjRfjacq1KkCNdhUDEI56uU1IoxLl3EYUFq+Ln4xtP4TR0AzlM5UsRhIsgMgwY499GxKkV4iRy1m/mafN8qFTJFlGc2m/mRoo0PuUgRFyOi1vG1vRCX3PhI5iofKfbb9Wq9Xheb8GGiaCs16+0+yXTJjMbbL9NVI5y7NOQU75MAcMaKkSK6TbDebjdh1bz5376tSa6dk8YkvhKvHSnaeyMzv/ExN1KkF93xQoxObHT63cfGm9tuPY/lj90mvvWSZIpMn4/x+c5XO9JENuyYu9klRQxRAuAfNPVcinyV4hNFiu5W/rwbH/28LIwU8boY69SRrfWPdZ/MhY9ZVYp0Bg/TxZTBXZXg5a7Hx6Cy0d8qKr0XzepuI1MA/HtmRIrVarXabD5tlaJ9Z1akyPQ6fGtfismwUOqtObpU/VzFb49HikItJZjPQWeOmc+oyBcfMj07NrvDMGkA8A8oRoq+LHHyKkXQyBUjRdIQzowUYXu+qC9FumryXUW6UUVTjFfFZr0O1mTpNkG73IPCwESk6OemVC4JB8wWLAoDZobKRKtsZaVdoBkTA+DvNf/Gx/AbiFGkmLAkUgSvFyNFcsN/P6cvRf56Pxn+VVWK2ZEinOHM6gnXS+nbGqns/Y3RL1tEfTSLujkc+VZIEM+GowsyRvDtGtULgHO1JFI0T2c4dl1YcNG58MuEc9qdTFV/qkoRXr+HM58PSflp5uoWxUixjS/M4xCR/xZqlN6mklp0g2N00PV2X5r78lLObfsLX//txxatdFUKgLM1FSlOb6piP3cYAOCEPl+kAAD+QiIFAFCBSAEAVCBSAAAViBQAQAUiBQBQgUgBAFQgUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABSIFAFCBSAEAVCBSAAAViBQAQAUiBQBQgUgBAFQgUgAAFYgUAEAFIgUAUIFIAQBUMB4pfv9YXdxeXv14aV94ub+7vP7Z/vXn4eo2+LN95eLxed4In69vLy/uHn4nA/28ubi9vEjGPBzP8IMAwEdZFCmaPy9ub54Oh8Ph8PR4eRFnguPwjzdXt5cXwb8uHEQjzOePl/u79oOFaNLOxlh2AQBOamGV4hgjrn68HANBGy+Cd1f3f9pKQ9fk/3m4ur28+vHSj7AtRbT/Vvd/wvE/N8GiVKhoU8XxUwDABytGimNi6P7d3He1gcG/6EbG7c3TMIsMI0WYPw6Hw+Hl9582KDRlj3YGCqmiLWa4/QEAn8FoleLYbIdVisPhkK1PHA5tZeLu4XdYzAg+ko0UV3eXF7c3Tz8fru7yeSUzA9FsjHW5AABOZDRSNFWHuZEi6FoR9Idobk/8HEaKl/u7y4u7m+smUiQdP9PRDuJLMHt6VADAxxuJFF0vyFmRortRcvfwu2nsH5/bOkc2UjTDPNwfI0WbSML7LHcPTz9WxTpE3xtDjwoA+GjlSBFXGh6fB70r4p6VXQN/9/D7501Uiri9eSp0z2y7YXaRov+PyUgRRRCFCgD4WMVIEXwjo2n4k44RmSrF3erq9vLi7uG+beyvf7YdNie/8XH81OxI0c1DqWMHAHBK45Hi6i79EunhUOpL8fzUBIi7m+u7LkxEFY6ke+bhcOjLGAtvfBwHfnw+DLuCAgCnN/Yl0rZFn/uNj+RpmG0donuIxYxIMa9KcRxzNwNNfNGjAgA+TrkvxfPTz8yjrg6H2ZEibOlrRorM91CiB1oAAKc39+mZxb6Z4XcuokhxbOabjpNz+1JM3/gIb3kECo/QAABOY+kDuQ+HeVWK4zDpzYj5VYqnYPguUrT9LXKdMT35CgA+0PtEiuO9iWHr/jutOiyIFGN5ojHjJ0wBgHfxHpGiuYWR7QAx6PGQRorr7hGc0bOzhl0yx2bYd0oB4NTGIwUAwCwiBQBQgUgBAFQgUgAAFYgUAEAFIgUAUIFIAQBUUIwU/wEA/Pfff//999ZI8T8A4J8nUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABSIFAFCBSAEAVCBSAAAViBQAQAUnixS/vn1ZrVZfv0cvfv+6Ovry7Vfm1fj1WVMIPtC8UBhV/+aCSQAABSeJFN+/rlZfvn37mkSK71/bv399+5Jv2b+nnyn69e3L6uvXr0mkyMeFX9++zB0tADDLCSLFr29fvn7/33g8GMsUc6oIx89/nxUpZo4TAJjvhH0pxiJF4b1f377MqSZ0gWRWpPj+9Vgycd8DAKr5FJGiuTHyK3lldoPfB4lBpMj1pPj+NezUMf/WCgBQ9vGR4te3LyPJYbrFD2NE+ZZGkFqSgdwGAYAKPjhSjOeJ46em3h/KhJB+6sl8iBQAUMGHRorhDY/Uwu9mFONBNJ5wssV+oQDAEqeIFINCQl8tyL1e6AIxRxQpRsYTvCVPAEANnp4JAFQgUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABSIFAFCBSAEAVCBSAAAViBQAQAUiBQBQwSkiRfT7XcEPdS19/aPGDwBMOlGkyDbbS1//qPEDAJNECgCgApECAKjg5H0pgsZ86esfNX4AYNKpv/Hx/Wu+FV/6+keNHwDIOvmXSL9/Xa2+fn/76x81fgAg58SR4te3L9kWfOnrHzV+ACDvBJFCVwoAOH+engkAVCBSAAAViBQAQAUiBQBQgUgBAFQgUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABSIFAFDBySJF82NdyY9+fv+a+/mu/tV5P+sV/Q5Y6RfChj832rzpd8MAoIaTRIrvX1erL9++fU0a9u9f279/ffuSb9u/p5/J+fXtS+7D4UiHE/j17cvq69evIgUAVHGaHzf/+v1/4/FgLFNMNvr5SPHr25dwcvGIjtObM3YAYIYT9qUYixSF95JYUJCPFMkow1F1AUakAIBKPkWkaG6M/EpeeV1fiv4D4fSinhx9kBApAKCSj48Uv759GUkOszpTJMN3I+uzxpdv39sqRRgjRAoAqOSDI8V4njh+alGrX8ogbV/Q8OsknSWhBQDI+NBIMbzhkfr17cuiBr8w/EjOUKUAgBpOESkGhYGmdR/WC5rXC10jiorD5596kcyZSAEANXh6JgBQgUgBAFQgUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABSIFAFCBSAEAVCBSAAAViBQAQAUnihTTv+D1tuEBgI91ql8iPSaDWT9WvnR4AODDnSBSxL8g/uvbl4nKw9LhAYCP9/6R4vvXvs7w69uX1Wo1XndYOjwA8AmcJFJ8+fbrGA6O/zURKRYNDwB8AqepUoTdLGdEikXDAwCfwPtHiqSH5WTfiKXDAwCfwIm/8RH1lKg1PADw4U7zXIq2m+XcnpZLhwcAPpinZwIAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABSIFAFCBSAEAVCBSAAAViBQAQAUiBQBQQYVIAQDw3xsjBQDAfCIFAFCBSAEAVCBSAAAViBQAQAUiBQBQgUgBAFQgUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABSIFAFCBSAEAVCBSAAAViBQAQAUiBQBQgUgBAFQgUgAAFYxHit8/Vhe3l1c/XtoXXu7vLq9/tn/9ebi6Df5sX7l4fJ43wufr28uLu4ffyUA/by5uLy+SMWe83N9dxrMHAHyQRZGi+fPi9ubpcDgcDk+PlxdxJjgO/3hzdXt5EfzrwkE0wnz+OAaFi9FoEg4pUgDAx1tYpTjGiKsfL8dA0MaL4N3V/Z+20tBlgj8PV7eXVz9e+hG2pYj23+r+Tzj+5yYuxIWK5+tgyGGkOCaeiSACALyDYqQ4Jobu3839sUSR+RfdyLi9eRpmkWGkCPPH4XA4vPz+02aCpuzRzkCQKkQKAPisRqsUhTsLufrE4dBWJu4efofFjOAj2UhxdXd5cXvz9PPh6i6fVwaRRaQAgM9nNFI0TfjcSBF0rQj6QzQh4OcwUrzc311e3N1cN5Ei6fiZjraZlkgBAJ/VSKRoO2POixTdjZK7h99N2//43Lb62UjRDPNwf4wUbSIJ77PcPTz9WAX3Po4RZ+KfSAEAp1eOFHGl4fF50Lsi7lnZdbe8e/j98yYqRdzePBW6Z7bdMLtI0f9HLlLk59A3PgDg4xUjRfCNjKbhTzpGZKoUd6ur28uLu4f7tt5w/bPtsDn5jY/jp0QKAPg7jUeKq7v0S6SHQ6kvxfNTEyDubq7vujARVTiS7pmHw6EvY8y48XEcoL+vMYwUx4lOPSMLAKht7EukbYs+9xsfydMw2zpE9xCLGZFirEohUgDA51XuS/H89DPzqKvDYXakCL+gIVIAwHmb+/TMYt/MoIdmHCmir3TO7UvhxgcA/J2WPpD7cJhXpTgO0z1DojTCYpXiKRhepACAz+59IkWxaf+dfoNjeaSY8U+kAIBTe49I0dzCyP3iV/csrE4aKa67R3BGz86aSZUCAD7IeKQAAJhFpAAAKhApAIAKRAoAoAKRAgCoQKQAACoQKQCACoqR4j8AgP/++++//94aKf4HAPzzRAoAoAKRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKjgRJHi+9fV0Zdvv957mQCAkztFpPj+tUsSv759Wa2+fn/3xQIATusEkeL717A08evbF5UKADg77x8pvn/t6xK/vn1ZrVbqFABwdk4SKb58+3UME8f/EikA4MycpkoRdssUKQDgDL1/pEh6ZOpLAQDn6MTf+Ih6VgAAZ+M0z6Vou2XqmQkAZ8rTMwGACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKhApAAAKhApAIAKRAoAoAKRAgCoQKQAACo41S+RtvyuOQCcpRNXKfy2OQCcp1Pf+Pj+VaECAM7QaSPFr29fFCkA4BydKFJ03SmUKADgLH3AjQ91CgA4Pyf/EqnOFABwjk4cKX59+6JKAQBn6ASR4te3L55LAQBnztMzAYAKRAoAoAKRAgCoQKQAACoQKQCACkQKAKACkQIAqECkAAAqECkAgApECgCgApECAKhApAAAKjhZpGh+PMyPkALAeTpJpPj+dbX68u3bV5ECAM7VaX7c/Ov3/zXBQqQAgPN0wr4UIgUAnC+RAgCoQKQAACoQKQCACkQKAKCCU0SK719XMcECAM6Np2cCABWIFABABSIFAFCBSAEAVCBSAAAViBQAQAUiBQBQgUgBAFQgUgAAFYgUAEAFIgUAUEGFSAEA8N8bIwUAwHwiBQBQgUgBAFQgUgAAFYgUAEAFIgUAUIFIAQBUIFIAABWIFABABSIFAFDB/wORVu/WOr8fdQAAAABJRU5ErkJggg==" alt="" />
--------------------------------
模拟加法过程即可。
AC代码:
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader reader=new BufferedReader(new InputStreamReader(System.in)); boolean first=true;
while(first || reader.ready()){
first=false;
String ss[]=reader.readLine().split(" ");
int a=Integer.parseInt(ss[0]);
int b=Integer.parseInt(ss[1]);
if(a==0 && b==0) return ;
System.out.println(solve(a,b));
} } public static int solve(int a,int b){
int res=0; boolean carry=false;
while(a>0 && b>0){
int t1=a%10;
int t2=b%10;
if(t1+t2+(carry?1:0)>=10){
res++;
carry=true;
}else{
carry=false;
}
a/=10;
b/=10;
}
return res;
} }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=74
NYOJ题目74小学生算术的更多相关文章
- nyoj 题目2 括号配对问题
描述 今天发现了nyoj,如获至宝.准备开刷. 括号配对问题 现在,有一行括号序列,请你检查这行括号是否配对. 输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的 ...
- NYOJ题目27水池数目
--------------------------------------------- 这道题有点坑,也怪我总是有点马虎,按照正常人的思维0是表示有水池啊竟然是1表示有水池,最坑的是写反了竟然还能 ...
- NYOJ题目20吝啬的国度
-----------------------------------------n-1条边的无向连通图是一棵树,又因为树上两点之间的路径是唯一的,所以解是唯一的.(注意并不一定是二叉树,所以最好采用 ...
- NYOJ题目28大数阶乘
-------------------------------------祭出BigInteger AC代码: import java.math.BigInteger; import java.uti ...
- NYOJ题目198数数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAK1CAIAAABEvL+NAAAgAElEQVR4nO3drXLkurvv8X0T4bmQYF
- NYOJ题目170网络的可靠性
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAs8AAANvCAIAAACte6C6AAAgAElEQVR4nOydPbLcNhOu7yaUayGOZy
- NYOJ题目168房间安排
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAOTCAIAAADGwNmiAAAgAElEQVR4nOy9PY7cyLPufTchXwsZu9
- NYOJ题目125盗梦空间
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAANLCAIAAAA4rUfgAAAgAElEQVR4nOydq7LdyrKm+yXM/SDG4y
- NYOJ题目124中位数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAJUCAIAAABsWvwaAAAgAElEQVR4nO3dPXLjuraG4TsJ5xqIYw
随机推荐
- SQL Server 查询、搜索命令、语句
--查询所有表 SELECT NAME,* FROM SYSOBJECTS WHERE XTYPE='U' order by SYSOBJECTS.name --查询所有存储过程 select * f ...
- 纯CSS多级菜单
主要代码部分: /*新增的二级菜单部分*/ .menu ul ul { visibility:hidden;/*开始时是隐藏的*/ position:absolute; left:0px; top:3 ...
- BZOJ2243——[SDOI2011]染色
1.题目大意:给个树,然后树上每个点都有颜色,然后会有路径的修改,有个询问,询问一条路径上的颜色分成了几段 2.分析:首先这个修改是树剖可以做的,对吧,但是这个分成了几段怎么搞呢,我们的树剖的不是要建 ...
- PHP中函数sprintf .vsprintf (占位符)
sprintf()格式化字符串写入一个变量中. vsprintf()格式化字符串些写入变量中. <?php $num1 = 123; $num2 = 456; $txt = vsprintf(& ...
- 一个IP多个https站点配置
在一台主机上放置一个https网站,究竟该怎么配置?对于IIS和Apache以及Nginx等不同的服务器,方法是不同的,网上有很多教程,在此就不再赘述了. 至于一台主机,如何配置多个https网站呢? ...
- Wilson定理证明
Wilson定理证明 就是那个\((p-1)! \equiv -1 \pmod{p}\),\(p\)是一个素数. Lemma A \(\mathbb{Z}_p\)可以去掉一个零元变成一个群. 即\(\ ...
- Oracle占用8080端口问题的解决
可能在本地同时安装过Tomcat和Oracle的人都会知道,安装完Oracle后,会发现Tomcat的8080端口已经被Oracle占用了. 完全安装Oracle数据库后,当我们访问8080端口时,会 ...
- 深入浅出Java回调机制
本文转载自http://hellosure.iteye.com/blog/1130176 在网上看到了一个比喻,觉得很形象,这里借用一下: 你有一个复杂的问题解决不了,打电话给你的同学,你的同学说可以 ...
- Majority Number I & || && |||
Majority Number Given an array of integers, the majority number is the number that occurs more than ...
- 常见概率组合题目总结quickstart
[本文链接] http://www.cnblogs.com/hellogiser/p/interview-questions-quickstart-for-combination-permutatio ...