UVa1161 Objective: Berlin(最大流)
题目
Source
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3602
Description
The administration of a well-known football team has made a study about the lack of support in international away games. This study has concluded that the only reason for this lack of support is the difficulty in organizing the travel arrangements. To help solving this problem, the administration has asked you to build a program that computes the maximum number of people that can fly from a departure city to a destination city, using the available places in regular flights in a given day, and arriving at or before a given time. When traveling from one city to another, a person may make multiple transfers. Each transfer is, at least, 30 minutes long, i.e., the departure time should be, at least 30 minutes after the arrival time. Given a set of flights for a single day and the latest arrival time, your program should compute the maximum number of persons that can fly, directly or indirectly, from departure city to a destination city, arriving at or before the latest arrival time.
Input
The input will contain several test cases, each of them as described below. Consecutive test cases are separated by a single blank line. The first line contains an integer (smaller or equal to 150) indicating the number of cities that have flight connections. The second line contains a string indicating the city of departure. The third line contains a string indicating the destination city. The fourth line contains the latest arrival time, in the format HHMM, where HH is the hour in the day (from 00 to 23) and MM is the minute in the hour (from 00 to 59). The fifth line contains an integer N (smaller or equal to 5000), with the number of existing flights. Each of the following N lines contains the info for each flight. Each such line contains two strings and three integers, separated by blank spaces, O E C D A, where O and E are, respectively, the origin and destination of a flight, C is the number of available places in the flight (from 0 to 300), and D and A are the departure and arrival times in the previously defined format HHMM. All flights start and end in the same day. City names may have up to 8 characters.
Output
For each test case, the output must follow the description below.
The output consists of one single line with an integer stating the maximum number of people that can fly from the origin to the destination city, using the given flights and arriving at or before the given latest arrival time.
Sample Input
4
lisbon
berlin
1500
9
lisbon london 6 1000 1100
london lisbon 6 1130 1230
lisbon paris 5 1000 1100
paris lisbon 4 1130 1230
london paris 1 1130 1300
london berlin 2 1340 1510
berlin london 2 1300 1430
paris berlin 10 1330 1500
berlin paris 9 1300 1430
Sample Output
6
分析
题目大概说有n个城市和m条航线,每条航线都是从某一时刻某一城市出发在某一时刻到达某一城市,且各条航线都有最多人数的限制。现在已知出发城市和目的地城市以及一个最终的时刻,问最多有多少人能在最终时刻前到达目的地。
这题自然会去想把城市看成点,航线看成边。这样的话城市需要按照时间拆点24*60*100=144000,太多了。。然而事实上有连边的点最多只会有2*m个,即10000个,其他10多W都是摆设,所以其实也OK吧。
这题的正解是:
- 把航线看成点,并且拆成两点x和x',x表示航线开始,另一点x'表示航线结束;
- 新建源点汇点,源点向所有从出发城市是起始城市的航线x连容量INF的边,所有到达城市是目的地且到达时间在最终时刻之前的航线x'向汇点连容量INF的边;
- 所有航线,x向x'连容量为航线限制人数的边,这样就表示航线从开始到结束最多能流过的人数;
- 对于所有的A航线和B航线,满足A航线到达城市为B航线出发城市 且 A航线到达时刻+30分钟在B航线开始时刻之前,由A'到B连容量INF的边,这样就表示A航线结束后可以起身开始进行B航线;
- 跑最大流就是结果了。
其实,这个解法也能看成是把城市按时间拆点并离散化。
不过没想到真的是10000个点去跑网络流。。另外,思维不要局限,图中的点和边可以是各种东西。。要大胆建图跑网络流。。
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 11111
#define MAXM 2222222 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=0;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=0; edge[NE].flow=0;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-1,sizeof(level));
memset(gap,0,sizeof(gap));
level[vt]=0;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-1) continue;
level[v]=level[u]+1;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-1,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=0,aug=INF;
gap[0]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+1){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^1].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==0) break;
level[u]=minlevel+1;
gap[level[u]]++;
u=pre[u];
}
return flow;
} int covert_time(int t){
return t/100*60+t%100;
} string city[111]; string from[5555],to[5555];
int cap[5555],s[5555],t[5555]; int main(){
int n,m;
while(cin>>n){
string s_city,t_city;
cin>>s_city>>t_city; int deadline; cin>>deadline;
deadline=covert_time(deadline); cin>>m;
for(int i=1; i<=m; ++i){
cin>>from[i]>>to[i]>>cap[i]>>s[i]>>t[i];
s[i]=covert_time(s[i]);
t[i]=covert_time(t[i]);
} vs=0; vt=m*2+1; NV=vt+1; NE=0;
memset(head,-1,sizeof(head));
for(int i=1; i<=m; ++i){
if(from[i]==s_city) addEdge(vs,i,INF);
if(to[i]==t_city && t[i]<=deadline) addEdge(i+m,vt,INF);
addEdge(i,i+m,cap[i]);
}
for(int i=1; i<=m; ++i){
for(int j=1; j<=m; ++j){
if(i==j) continue;
if(to[i]==from[j] && t[i]+30<=s[j]) addEdge(i+m,j,INF);
}
}
printf("%d\n",ISAP());
}
return 0;
}
UVa1161 Objective: Berlin(最大流)的更多相关文章
- UVALive 3645 Objective: Berlin(最大流 :时序模型)
题意:已知n(n <= 150)个城市和m(m <= 5000)个航班,每个航班有出发地.到达地.乘坐人数.起飞时间和降落时间(时间用时和分表示),求从一个指定城市出发,去往另一个指定城市 ...
- UVaLive 3645 Objective: Berlin (最大流)
题意:有n个城市,m条航班.已知每条航班的起点和终点,还有每条航班的载客量.出发时间.到达时间.并且要求在任何一个城市(起点.终点除外)都至少要有30分钟的中转时间,求起点到终点的最大客流量. 析:把 ...
- UVa 1161 Objective: Berlin (最大流)
题意:给定一些航班,每个航班有人数,和起始终止时间,每次转机要花半小时,问限制时间内最多能有多少人从起始城市到终点城市. 析:差不多是裸板网络流的最大流问题,把每个航班都拆成两个点,这两个点之间连接一 ...
- UVA - 1161 Objective: Berlin(最大流+时序模型)
题目大意:有n个城市m条航线.给出每条航线的出发地,目的地,座位数,起飞时间和到达时间(所给形式为HHMM.记得转化),再给出城市A和B.和到达城市B的最晚时间.如今问一天内最多有多少人能从A飞到B, ...
- UVALive-3645 Objective: Berlin (最大流:时序模型)
题目大意:有n个城市,m条航班.已知每条航班的起点和终点,还有每条航班的载客量.出发时间.到达时间.并且要求在任何一个城市(起点.终点除外)都至少要有30分钟的中转时间,求起点到终点的最大客流量. 题 ...
- UVALIVE 3645 Objective: Berlin
最大流 .以航班为节点进行最大流. 容量限制进行拆点. 如果时间地点满足可以建一条边. 具体看代码.变量名被修改过了.一开始的变量名可能比较容易看懂 但CE了.可能与库里的变量重复了. AC代码 #i ...
- Automake
Automake是用来根据Makefile.am生成Makefile.in的工具 标准Makefile目标 'make all' Build programs, libraries, document ...
- Objective-C的IO流
- HDU4309-Seikimatsu Occult Tonneru(最大流)
Seikimatsu Occult Tonneru Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
随机推荐
- August 20th 2016 Week 34th Saturday
Everything you see exists together in a delicate balance. 你所看到的一切都处于微妙的平衡中. Seeking for balance in l ...
- xth的旅行(codevs 1450)
题目描述 Description 毕业了,Xth很高兴,因为他要和他的 rabbit 去双人旅行了.他们来到了水城威尼斯.众所周知(⊙﹏⊙b汗),这里的水路交通很发达,所以 xth 和 rabbit ...
- 高校排名 加强版(codevs 2799)
题目描述 Description 大学排名现在已经非常流行.在网上搜索可查到关于中国大学排行的各个方面的消息. 我们知道,在一大学里通常都由许多不同的"系"(专业)组成,比如计算机 ...
- Android -- View setScale, setTranslation 对View矩阵的处理
参考: 1.Android Matrix理论与应用详解 2.2D平面中关于矩阵(Matrix)跟图形变换的讲解 3.Android中关于矩阵(Matrix)前乘后乘的一些认识 4.Android Ma ...
- traceroute
把跳数设置为10次: ]# traceroute -m www.baidu.com traceroute to www.baidu.com ( hops max, byte packets 10.10 ...
- CLR via C#(07)-静态类,分部类
一. 静态类-Static 静态类是一些不能实例化的类,它的作用是将一些相关的成员组合到一起,像我们常见的Math, Console等.静态类由static关键字标识,静态类成员也只能是st ...
- MyBatis魔法堂:即学即用篇
一.前言 本篇内容以理解MyBatis的基本用法和快速在项目中实践为目的,遵循Make it work,better and excellent原则. 技术栈为My ...
- SQL数据字符串的拆分
一.概述: MSSQL字符串的拆分没有封装太多常用的方式,所以如果向数据库中插入用特殊字符分割字符串(比如CB0$CB2$CB3,CB0$CB2$CB3)时就可能需要数据库能够分割字符串,SQL中拆分 ...
- static_cast、dynamic_cast、reinterpret_cast、const_cast以及C强制类型转换的区别
static_cast 1. 基础类型之间互转.如:float转成int.int转成unsigned int等 2. 指针与void*之间互转.如:float*转成void*.CBase*转成void ...
- 7z命令行工具
7z (中文)是优秀开源的压缩解压缩软件(wiki: en 中文),有windows版本与linux版本,最新的9.32版本支持的格式包括: 压缩与解压缩均支持:7z, XZ, BZIP2, GZI ...