python中的协程并发
python asyncio
网络模型有很多中,为了实现高并发也有很多方案,多线程,多进程。无论多线程和多进程,IO的调度更多取决于系统,而协程的方式,调度来自用户,用户可以在函数中yield一个状态。使用协程可以实现高效的并发任务。Python的在3.4中引入了协程的概念,可是这个还是以生成器对象为基础,3.5则确定了协程的语法。下面将简单介绍asyncio的使用。实现协程的不仅仅是asyncio,tornado和gevent都实现了类似的功能。
- event_loop 事件循环:程序开启一个无限的循环,程序员会把一些函数注册到事件循环上。当满足事件发生的时候,调用相应的协程函数。
- coroutine 协程:协程对象,指一个使用async关键字定义的函数,它的调用不会立即执行函数,而是会返回一个协程对象。协程对象需要注册到事件循环,由事件循环调用。
- task 任务:一个协程对象就是一个原生可以挂起的函数,任务则是对协程进一步封装,其中包含任务的各种状态。
- future: 代表将来执行或没有执行的任务的结果。它和task上没有本质的区别
- async/await 关键字:python3.5 用于定义协程的关键字,async定义一个协程,await用于挂起阻塞的异步调用接口。
上述的概念单独拎出来都不好懂,比较他们之间是相互联系,一起工作。下面看例子,再回溯上述概念,更利于理解。
定义一个协程
定义一个协程很简单,使用async关键字,就像定义普通函数一样:
import time
import asyncio now = lambda : time.time() async def do_some_work(x):
print('Waiting: ', x) start = now() coroutine = do_some_work(2) loop = asyncio.get_event_loop()
loop.run_until_complete(coroutine) print('TIME: ', now() - start)
通过async关键字定义一个协程(coroutine),协程也是一种对象。协程不能直接运行,需要把协程加入到事件循环(loop),由后者在适当的时候调用协程。asyncio.get_event_loop
方法可以创建一个事件循环,然后使用run_until_complete
将协程注册到事件循环,并启动事件循环。因为本例只有一个协程,于是可以看见如下输出:
Waiting: 2
TIME:
创建一个task
协程对象不能直接运行,在注册事件循环的时候,其实是run_until_complete方法将协程包装成为了一个任务(task)对象。所谓task对象是Future类的子类。保存了协程运行后的状态,用于未来获取协程的结果。
import asyncio
import time now = lambda : time.time() async def do_some_work(x):
print('Waiting: ', x) start = now() coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
# task = asyncio.ensure_future(coroutine)
task = loop.create_task(coroutine)
print(task)
loop.run_until_complete(task)
print(task)
print('TIME: ', now() - start)
可以看到输出结果为:
<Task pending coro=<do_some_work() running at /Users/ghost/Rsj217/python3.6/async/async-main.py:17>>
Waiting: 2
<Task finished coro=<do_some_work() done, defined at /Users/ghost/Rsj217/python3.6/async/async-main.py:17> result=None>
TIME: 0.0003490447998046875
创建task后,task在加入事件循环之前是pending状态,因为do_some_work中没有耗时的阻塞操作,task很快就执行完毕了。后面打印的finished状态。
asyncio.ensure_future(coroutine) 和 loop.create_task(coroutine)都可以创建一个task,run_until_complete的参数是一个futrue对象。当传入一个协程,其内部会自动封装成task,task是Future的子类。isinstance(task, asyncio.Future)
将会输出True。
绑定回调
绑定回调,在task执行完毕的时候可以获取执行的结果,回调的最后一个参数是future对象,通过该对象可以获取协程返回值。如果回调需要多个参数,可以通过偏函数导入。
import time
import asyncio now = lambda : time.time() async def do_some_work(x):
print('Waiting: ', x)
return 'Done after {}s'.format(x) def callback(future):
print('Callback: ', future.result()) start = now() coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(coroutine)
task.add_done_callback(callback)
loop.run_until_complete(task) print('TIME: ', now() - start)
def callback(t, future):
print('Callback:', t, future.result()) task.add_done_callback(functools.partial(callback, 2))
future 与 result
回调一直是很多异步编程的恶梦,程序员更喜欢使用同步的编写方式写异步代码,以避免回调的恶梦。回调中我们使用了future对象的result方法。前面不绑定回调的例子中,我们可以看到task有fiinished状态。在那个时候,可以直接读取task的result方法。
async def do_some_work(x):
print('Waiting {}'.format(x))
return 'Done after {}s'.format(x) start = now() coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(coroutine)
loop.run_until_complete(task) print('Task ret: {}'.format(task.result()))
print('TIME: {}'.format(now() - start))
可以看到输出的结果:
Waiting: 2
Task ret: Done after 2s
TIME: 0.0003650188446044922
阻塞和await
使用async可以定义协程对象,使用await可以针对耗时的操作进行挂起,就像生成器里的yield一样,函数让出控制权。协程遇到await,事件循环将会挂起该协程,执行别的协程,直到其他的协程也挂起或者执行完毕,再进行下一个协程的执行。
耗时的操作一般是一些IO操作,例如网络请求,文件读取等。我们使用asyncio.sleep函数来模拟IO操作。协程的目的也是让这些IO操作异步化。
import asyncio
import time now = lambda: time.time() async def do_some_work(x):
print('Waiting: ', x)
await asyncio.sleep(x)
return 'Done after {}s'.format(x) start = now() coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(coroutine)
loop.run_until_complete(task) print('Task ret: ', task.result())
print('TIME: ', now() - start)
在 sleep的时候,使用await让出控制权。即当遇到阻塞调用的函数的时候,使用await方法将协程的控制权让出,以便loop调用其他的协程。现在我们的例子就用耗时的阻塞操作了。
并发和并行
并发和并行一直是容易混淆的概念。并发通常指有多个任务需要同时进行,并行则是同一时刻有多个任务执行。用上课来举例就是,并发情况下是一个老师在同一时间段辅助不同的人功课。并行则是好几个老师分别同时辅助多个学生功课。简而言之就是一个人同时吃三个馒头还是三个人同时分别吃一个的情况,吃一个馒头算一个任务。
asyncio实现并发,就需要多个协程来完成任务,每当有任务阻塞的时候就await,然后其他协程继续工作。创建多个协程的列表,然后将这些协程注册到事件循环中。
import asyncio import time now = lambda: time.time() async def do_some_work(x):
print('Waiting: ', x) await asyncio.sleep(x)
return 'Done after {}s'.format(x) start = now() coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(4) tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
] loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks)) for task in tasks:
print('Task ret: ', task.result()) print('TIME: ', now() - start)
结果如下
Waiting: 1
Waiting: 2
Waiting: 4
Task ret: Done after 1s
Task ret: Done after 2s
Task ret: Done after 4s
TIME: 4.003541946411133
总时间为4s左右。4s的阻塞时间,足够前面两个协程执行完毕。如果是同步顺序的任务,那么至少需要7s。此时我们使用了aysncio实现了并发。asyncio.wait(tasks) 也可以使用 asyncio.gather(*tasks) ,前者接受一个task列表,后者接收一堆task。
协程嵌套
使用async可以定义协程,协程用于耗时的io操作,我们也可以封装更多的io操作过程,这样就实现了嵌套的协程,即一个协程中await了另外一个协程,如此连接起来。
import asyncio import time now = lambda: time.time() async def do_some_work(x):
print('Waiting: ', x) await asyncio.sleep(x)
return 'Done after {}s'.format(x) async def main():
coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(4) tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
] dones, pendings = await asyncio.wait(tasks) for task in dones:
print('Task ret: ', task.result()) start = now() loop = asyncio.get_event_loop()
loop.run_until_complete(main()) print('TIME: ', now() - start)
如果使用的是 asyncio.gather创建协程对象,那么await的返回值就是协程运行的结果。
results = await asyncio.gather(*tasks) for result in results:
print('Task ret: ', result)
不在main协程函数里处理结果,直接返回await的内容,那么最外层的run_until_complete将会返回main协程的结果。
async def main():
coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(2) tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
] return await asyncio.gather(*tasks) start = now() loop = asyncio.get_event_loop()
results = loop.run_until_complete(main()) for result in results:
print('Task ret: ', result)
或者返回使用asyncio.wait方式挂起协程。
async def main():
coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(4) tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
] return await asyncio.wait(tasks) start = now() loop = asyncio.get_event_loop()
done, pending = loop.run_until_complete(main()) for task in done:
print('Task ret: ', task.result())
也可以使用asyncio的as_completed方法
async def main():
coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(4) tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
]
for task in asyncio.as_completed(tasks):
result = await task
print('Task ret: {}'.format(result)) start = now() loop = asyncio.get_event_loop()
done = loop.run_until_complete(main())
print('TIME: ', now() - start)
由此可见,协程的调用和组合十分灵活,尤其是对于结果的处理,如何返回,如何挂起,需要逐渐积累经验和前瞻的设计。
协程停止
上面见识了协程的几种常用的用法,都是协程围绕着事件循环进行的操作。future对象有几个状态:
- Pending
- Running
- Done
- Cancelled
创建future的时候,task为pending,事件循环调用执行的时候当然就是running,调用完毕自然就是done,如果需要停止事件循环,就需要先把task取消。可以使用asyncio.Task获取事件循环的task
import asyncio import time now = lambda: time.time() async def do_some_work(x):
print('Waiting: ', x) await asyncio.sleep(x)
return 'Done after {}s'.format(x) coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(2) tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
] start = now() loop = asyncio.get_event_loop()
try:
loop.run_until_complete(asyncio.wait(tasks))
except KeyboardInterrupt as e:
print(asyncio.Task.all_tasks())
for task in asyncio.Task.all_tasks():
print(task.cancel())
loop.stop()
loop.run_forever()
finally:
loop.close() print('TIME: ', now() - start)
启动事件循环之后,马上ctrl+c,会触发run_until_complete的执行异常 KeyBorardInterrupt。然后通过循环asyncio.Task取消future。可以看到输出如下:
Waiting: 1
Waiting: 2
Waiting: 2
{<Task pending coro=<do_some_work() running at /Users/ghost/Rsj217/python3.6/async/async-main.py:18> wait_for=<Future pending cb=[<TaskWakeupMethWrapper object at 0x101230648>()]> cb=[_wait.<locals>._on_completion() at /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/tasks.py:374]>, <Task pending coro=<do_some_work() running at /Users/ghost/Rsj217/python3.6/async/async-main.py:18> wait_for=<Future pending cb=[<TaskWakeupMethWrapper object at 0x1032b10a8>()]> cb=[_wait.<locals>._on_completion() at /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/tasks.py:374]>, <Task pending coro=<wait() running at /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/tasks.py:307> wait_for=<Future pending cb=[<TaskWakeupMethWrapper object at 0x103317d38>()]> cb=[_run_until_complete_cb() at /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/base_events.py:176]>, <Task pending coro=<do_some_work() running at /Users/ghost/Rsj217/python3.6/async/async-main.py:18> wait_for=<Future pending cb=[<TaskWakeupMethWrapper object at 0x103317be8>()]> cb=[_wait.<locals>._on_completion() at /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/tasks.py:374]>}
True
True
True
True
TIME: 0.8858370780944824
True表示cannel成功,loop stop之后还需要再次开启事件循环,最后在close,不然还会抛出异常:
Task was destroyed but it is pending!
task: <Task pending coro=<do_some_work() done,
循环task,逐个cancel是一种方案,可是正如上面我们把task的列表封装在main函数中,main函数外进行事件循环的调用。这个时候,main相当于最外出的一个task,那么处理包装的main函数即可。
import asyncio import time now = lambda: time.time() async def do_some_work(x):
print('Waiting: ', x) await asyncio.sleep(x)
return 'Done after {}s'.format(x) async def main():
coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(2) tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
]
done, pending = await asyncio.wait(tasks)
for task in done:
print('Task ret: ', task.result()) start = now() loop = asyncio.get_event_loop()
task = asyncio.ensure_future(main())
try:
loop.run_until_complete(task)
except KeyboardInterrupt as e:
print(asyncio.Task.all_tasks())
print(asyncio.gather(*asyncio.Task.all_tasks()).cancel())
loop.stop()
loop.run_forever()
finally:
loop.close()
不同线程的事件循环
很多时候,我们的事件循环用于注册协程,而有的协程需要动态的添加到事件循环中。一个简单的方式就是使用多线程。当前线程创建一个事件循环,然后在新建一个线程,在新线程中启动事件循环。当前线程不会被block。
from threading import Thread def start_loop(loop):
asyncio.set_event_loop(loop)
loop.run_forever() def more_work(x):
print('More work {}'.format(x))
time.sleep(x)
print('Finished more work {}'.format(x)) start = now()
new_loop = asyncio.new_event_loop()
t = Thread(target=start_loop, args=(new_loop,))
t.start()
print('TIME: {}'.format(time.time() - start)) new_loop.call_soon_threadsafe(more_work, 6)
new_loop.call_soon_threadsafe(more_work, 3)
启动上述代码之后,当前线程不会被block,新线程中会按照顺序执行call_soon_threadsafe方法注册的more_work方法,后者因为time.sleep操作是同步阻塞的,因此运行完毕more_work需要大致6 + 3
新线程协程
def start_loop(loop):
asyncio.set_event_loop(loop)
loop.run_forever() async def do_some_work(x):
print('Waiting {}'.format(x))
await asyncio.sleep(x)
print('Done after {}s'.format(x)) def more_work(x):
print('More work {}'.format(x))
time.sleep(x)
print('Finished more work {}'.format(x)) start = now()
new_loop = asyncio.new_event_loop()
t = Thread(target=start_loop, args=(new_loop,))
t.start()
print('TIME: {}'.format(time.time() - start)) asyncio.run_coroutine_threadsafe(do_some_work(6), new_loop)
asyncio.run_coroutine_threadsafe(do_some_work(4), new_loop)
上述的例子,主线程中创建一个new_loop,然后在另外的子线程中开启一个无限事件循环。主线程通过run_coroutine_threadsafe新注册协程对象。这样就能在子线程中进行事件循环的并发操作,同时主线程又不会被block。一共执行的时间大概在6s左右。
master-worker主从模式
对于并发任务,通常是用生成消费模型,对队列的处理可以使用类似master-worker的方式,master主要用户获取队列的msg,worker用户处理消息。
为了简单起见,并且协程更适合单线程的方式,我们的主线程用来监听队列,子线程用于处理队列。这里使用redis的队列。主线程中有一个是无限循环,用户消费队列。
while True:
task = rcon.rpop("queue")
if not task:
time.sleep(1)
continue
asyncio.run_coroutine_threadsafe(do_some_work(int(task)), new_loop)
给队列添加一些数据:
127.0.0.1:6379[3]> lpush queue 2
(integer) 1
127.0.0.1:6379[3]> lpush queue 5
(integer) 1
127.0.0.1:6379[3]> lpush queue 1
(integer) 1
127.0.0.1:6379[3]> lpush queue 1
可以看见输出:
Waiting 2
Done 2
Waiting 5
Waiting 1
Done 1
Waiting 1
Done 1
Done 5
我们发起了一个耗时5s的操作,然后又发起了连个1s的操作,可以看见子线程并发的执行了这几个任务,其中5s awati的时候,相继执行了1s的两个任务。
停止子线程
如果一切正常,那么上面的例子很完美。可是,需要停止程序,直接ctrl+c,会抛出KeyboardInterrupt错误,我们修改一下主循环:
try:
while True:
task = rcon.rpop("queue")
if not task:
time.sleep(1)
continue
asyncio.run_coroutine_threadsafe(do_some_work(int(task)), new_loop)
except KeyboardInterrupt as e:
print(e)
new_loop.stop()
可是实际上并不好使,虽然主线程try了KeyboardInterrupt异常,但是子线程并没有退出,为了解决这个问题,可以设置子线程为守护线程,这样当主线程结束的时候,子线程也随机退出。
new_loop = asyncio.new_event_loop()
t = Thread(target=start_loop, args=(new_loop,))
t.setDaemon(True) # 设置子线程为守护线程
t.start() try:
while True:
# print('start rpop')
task = rcon.rpop("queue")
if not task:
time.sleep(1)
continue
asyncio.run_coroutine_threadsafe(do_some_work(int(task)), new_loop)
except KeyboardInterrupt as e:
print(e)
new_loop.stop()
线程停止程序的时候,主线程退出后,子线程也随机退出才了,并且停止了子线程的协程任务。
python中的协程并发的更多相关文章
- python中的协程及实现
1.协程的概念: 协程是一种用户态的轻量级线程.协程拥有自己的寄存器上下文和栈. 协程调度切换时,将寄存器上下文和栈保存到其他地方,在切换回来的时候,恢复先前保存的寄存器上下文和栈. 因此,协程能保留 ...
- python中的协程:greenlet和gevent
python中的协程:greenlet和gevent 协程是一中多任务实现方式,它不需要多个进程或线程就可以实现多任务. 1.通过yield实现协程: 代码: import time def A(): ...
- Python中异步协程的使用方法介绍
1. 前言 在执行一些 IO 密集型任务的时候,程序常常会因为等待 IO 而阻塞.比如在网络爬虫中,如果我们使用 requests 库来进行请求的话,如果网站响应速度过慢,程序一直在等待网站响应,最后 ...
- Python中Paramiko协程方式详解
什么是协程 协程我们可以看做是一种用户空间的线程. 操作系统对齐存在一无所知,需要用户自己去调度. 比如说进程,线程操作系统都是知道它们存在的.协程的话是用户空间的线程,操作系统是不知道的. 为什么要 ...
- 协程及Python中的协程
1 协程 1.1协程的概念 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程.(其实并没有说明白~) 我觉得单说协程,比较抽象,如果对线程有一定了解 ...
- python中多进程+协程的使用以及为什么要用它
前面讲了为什么python里推荐用多进程而不是多线程,但是多进程也有其自己的限制:相比线程更加笨重.切换耗时更长,并且在python的多进程下,进程数量不推荐超过CPU核心数(一个进程只有一个GIL, ...
- Python | 详解Python中的协程,为什么说它的底层是生成器?
今天是Python专题的第26篇文章,我们来聊聊Python当中的协程. 我们曾经在golang关于goroutine的文章当中简单介绍过协程的概念,我们再来简单review一下.协程又称为是微线程, ...
- Python中的协程,为什么说它的底层是生成器?
我们曾经在golang关于goroutine的文章当中简单介绍过 协程 的概念,我们再来简单review一下.协程又称为是微线程,英文名是Coroutine.它和线程一样可以调度,但是不同的是线程的启 ...
- python中的协程
目录 协程是啥 协程和线程差异 简单实现协程 greenlet 安装方式 gevent 安装 1. gevent的使用 2. gevent切换执行 3. 给程序打补丁 进程.线程.协程对比 请仔细理解 ...
随机推荐
- Daily Scrumming 2015.10.20(Day 1)
一.今明两天任务表 Member Today’s Task Tomorrow’s Task 江昊 购买服务器,搭建服务器,配置服务器端用户与权限管理 配置ruby与rails环境 配置mysql与数据 ...
- 20172308 实验一《Java开发环境的熟悉》实验报告
20172308 2017-2018-2 <程序设计与数据结构>实验1报告 课程:<程序设计与数据结构> 班级: 1723 姓名: 周亚杰 学号:20172308 实验教师:王 ...
- YQCB冲刺周第六天
站立会议如上图 任务看板: 今天的任务为依旧为将用户记录的数据添加到数据库中,以及金额球的设置. 遇到的问题为金额球在jsp页面的显示.
- spring冲刺第五天
昨天进行了地图的初步编写,上网查找了错误的原因,改进了源代码,使程序可以执行. 今天继续编写地图代码,完善地图界面,使其变得美观. 遇到的问题:地图的完善比较难.
- 《UML大战需求分析》-读后感三
用例图是用来描述什么角色通过某某系统能做什么的图,用例图关注的是系统的外在表示想爱你.系统与人的交互系统与其他系统的交互,小人执行者就是角色,角色 是对系统使用者的抽象,一个角色可以代表多个具体的人而 ...
- 软工1816 · Beta冲刺(6/7)
团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 推进Web端完成开发 推进修改一些后端接口的逻辑 着手制作视频 接下来的计划 ...
- asp.net登录验证FormsAuthenticationTicket和FormsAuthentication类
登录部分使用的类 FormsAuthentication 为 Web 应用程序管理 Forms 身份验证服务. 配置启用身份验证,WEB.config配置: <system.web> ...
- 使用 java 实现一个简单的 markdown 语法解析器
1. 什么是 markdown Markdown 是一种轻量级的「标记语言」,它的优点很多,目前也被越来越多的写作爱好者,撰稿者广泛使用.看到这里请不要被「标记」.「语言」所迷惑,Markdown 的 ...
- Redis有序集内部实现原理分析(二)
Redis技术交流群481804090 Redis:https://github.com/zwjlpeng/Redis_Deep_Read 本篇博文紧随上篇Redis有序集内部实现原理分析,在这篇博文 ...
- Selenium_IDE的基本使用及脚本解析
Selenium确实还是很强大的.根据我以往的经验,这个东西在web测试里的作用还是相当大的.经过近期研究,暂时对基本运作方式有了一定了 解,依旧找个实例记录一下.本段脚本实现的是网易返现个人中心登录 ...