http://poj.org/problem?id=3308

r*c的地图

每一个大炮可以消灭一行一列的敌人

安装消灭第i行的大炮花费是ri

安装消灭第j行的大炮花费是ci

已知敌人坐标,同时消灭所有敌人,问最小花费

花费为所有大炮消费的乘积

乘转加:log(a*b*c)=log(a)+log(b)+log(c)

经典的最小点权覆盖

源点向行连,列向汇点连

第i行j列有敌人,点i向点j连inf边

最小点权覆盖=最小割

#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std; const double inf=;
const double eps=1e-; #define N 201
#define M 701 int src,decc; int tot;
int front[N],to[M<<],nxt[M<<];
double val[M<<]; int cur[N],lev[N]; queue<int>q; void add(int u,int v,double cap)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; val[tot]=cap;
to[++tot]=u; nxt[tot]=front[v]; front[v]=tot; val[tot]=;
} bool bfs()
{
for(int i=;i<=decc;++i) lev[i]=-,cur[i]=front[i];
while(!q.empty()) q.pop();
lev[src]=;
q.push(src);
int now,t;
while(!q.empty())
{
now=q.front();
q.pop();
for(int i=front[now];i;i=nxt[i])
{
t=to[i];
if(lev[t]==- && val[i]>eps)
{
lev[t]=lev[now]+;
if(t==decc) return true;
q.push(t);
}
}
}
return false;
} double dinic(int now,double flow)
{
if(now==decc) return flow;
double rest=,delta;
int t;
for(int &i=cur[now];i;i=nxt[i])
{
t=to[i];
if(lev[t]>lev[now] && val[i]>eps)
{
delta=dinic(t,min(flow-rest,val[i]));
if(delta>eps)
{
rest+=delta;
val[i]-=delta; val[i^]+=delta;
if(fabs(rest-flow)<eps) break;
}
}
}
if(fabs(rest-flow)>eps) lev[now]=-;
return rest;
} int main()
{
int T;
scanf("%d",&T);
int n,m,k;
double x,ans;
int a,b;
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
decc=n+m+;
tot=;
memset(front,,sizeof(front));
for(int i=;i<=n;++i)
{
scanf("%lf",&x);
add(src,i,log(x));
}
for(int i=;i<=m;++i)
{
scanf("%lf",&x);
add(i+n,decc,log(x));
}
for(int i=;i<=k;++i)
{
scanf("%d%d",&a,&b);
add(a,b+n,inf);
}
ans=;
while(bfs()) ans+=dinic(src,inf);
printf("%.4lf\n",exp(ans));
}
}
Paratroopers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8903   Accepted: 2679

Description

It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the Mars. Recently, the commanders of the Earth are informed by their spies that the invaders of Mars want to land some paratroopers in the × n grid yard of one their main weapon factories in order to destroy it. In addition, the spies informed them the row and column of the places in the yard in which each paratrooper will land. Since the paratroopers are very strong and well-organized, even one of them, if survived, can complete the mission and destroy the whole factory. As a result, the defense force of the Earth must kill all of them simultaneously after their landing.

In order to accomplish this task, the defense force wants to utilize some of their most hi-tech laser guns. They can install a gun on a row (resp. column) and by firing this gun all paratroopers landed in this row (resp. column) will die. The cost of installing a gun in the ith row (resp. column) of the grid yard is ri (resp. ci ) and the total cost of constructing a system firing all guns simultaneously is equal to the product of their costs. Now, your team as a high rank defense group must select the guns that can kill all paratroopers and yield minimum total cost of constructing the firing system.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing three integers 1 ≤ m ≤ 50 , 1 ≤ n ≤ 50 and 1 ≤ l ≤ 500 showing the number of rows and columns of the yard and the number of paratroopers respectively. After that, a line with m positive real numbers greater or equal to 1.0 comes where the ith number is ri and then, a line with n positive real numbers greater or equal to 1.0 comes where the ith number is ci. Finally, l lines come each containing the row and column of a paratrooper.

Output

For each test case, your program must output the minimum total cost of constructing the firing system rounded to four digits after the fraction point.

Sample Input

1
4 4 5
2.0 7.0 5.0 2.0
1.5 2.0 2.0 8.0
1 1
2 2
3 3
4 4
1 4

Sample Output

16.0000

POJ 3308 Paratroopers(最小点权覆盖)(对数乘转加)的更多相关文章

  1. POJ - 3308 Paratroopers (最小点权覆盖)

    题意:N*M个格点,K个位置会有敌人.每行每列都有一门炮,能打掉这一行(列)上所有的敌人.每门炮都有其使用价值.总花费是所有使用炮的权值的乘积.求最小的总花费. 若每门炮的权值都是1,就是求最小点覆盖 ...

  2. poj3308 Paratroopers --- 最小点权覆盖-&gt;最小割

    题目是一个非常明显的二分图带权匹配模型, 加入源点到nx建边,ny到汇点建边,(nx.ny)=inf建边.求最小割既得最小点权覆盖. 在本题中因为求的是乘积,所以先所有取log转换为加法,最后再乘方回 ...

  3. POJ 3308 Paratroopers(最小割EK(邻接表&矩阵))

    Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the ...

  4. zoj 2874 &amp; poj 3308 Paratroopers (最小割)

    意甲冠军: 一m*n该网络的规模格.详细地点称为伞兵着陆(行和列). 现在,在一排(或列) 安装激光枪,激光枪可以杀死线(或塔)所有伞兵.在第一i安装一排 费用是Ri.在第i列安装的费用是Ci. 要安 ...

  5. POJ 3308 Paratroopers (对数转换+最小点权覆盖)

    题意 敌人侵略r*c的地图.为了消灭敌人,可以在某一行或者某一列安置超级大炮.每一个大炮可以瞬间消灭这一行(或者列)的敌人.安装消灭第i行的大炮消费是ri.安装消灭第j行的大炮消费是ci现在有n个敌人 ...

  6. POJ 3308 Paratroopers(最大流最小割の最小点权覆盖)

    Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the ...

  7. poj 3308 Paratroopers(二分图最小点权覆盖)

    Paratroopers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8954   Accepted: 2702 Desc ...

  8. poj 3308(最小点权覆盖、最小割)

    题目链接:http://poj.org/problem?id=3308 思路:裸的最小点权覆盖,建立超级源点和超级汇点,将源点与行相连,容量为这行消灭敌人的代价,将列与汇点相连,容量为这列消灭敌人的代 ...

  9. POJ3308 Paratroopers(最小割/二分图最小点权覆盖)

    把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...

随机推荐

  1. beat冲刺(3/7)

    目录 摘要 团队部分 个人部分 摘要 队名:小白吃 组长博客:hjj 作业博客:beta冲刺(3/7) 团队部分 后敬甲(组长) 过去两天完成了哪些任务 整理博客 ppt模板 接下来的计划 做好机动. ...

  2. VMware上配置DPDK环境并运行实例程序

    1. 在虚拟机VMware上配置环境 VMware安装:http://www.zdfans.com/html/5928.html Ubuntu:https://www.ubuntu.com/downl ...

  3. Java编写的电梯模拟系统《结对作业》

    作业代码:https://coding.net/u/liyi175/p/Dianti/git 伙伴成员:李伊 http://home.cnblogs.com/u/Yililove/ 对于这次作业,我刚 ...

  4. Java 线程结束 & 守护线程

    /* 停止线程: 1,stop方法. 2,run方法结束. 怎么控制线程的任务结束呢? 任务中都会有循环结构,只要控制住循环就可以结束任务. 控制循环通常就用定义标记来完成. 但是如果线程处于了冻结状 ...

  5. printf in KEIL C51

    转自:http://blog.csdn.net/it1988888/article/details/8821713 在keil中printf默认是向串口中发送数据的,所以,如果应用该函数,必须先初始化 ...

  6. HighCharts点击柱形或饼块等加URL或Click事件

    我们在做图表的时候,有时候需要在单个数据上加链接或点击事件,是在plotOptions里的events里设置的: 如下代码: plotOptions: { pie: { cursor: 'pointe ...

  7. 第五周PSP&进度条

    团队项目psp: 一.表格     C类型 C内容 S开始时间 E结束时间 I时间间隔 T净时间(mins) 预计花费时间(mins) 讨论 讨论用户界面 9:27 10:42 18 57 60 分析 ...

  8. By.cssSelector定位元素一个不足发现

     这个如果用cssSelector定位,代码如下,此时输出的数值是0 System.out.println(driver.findElements(By.cssSelector("div[c ...

  9. 使用JavascriptExecutor将页面滚动到最底部

    使用如下代码,将页面滚动到最底部 @Test(enabled = true) public void scroll(){ String jsStr="window.scrollTo(0,do ...

  10. [知乎]老狼:深入PCI与PCIe之二:软件篇

    深入PCI与PCIe之二:软件篇 https://zhuanlan.zhihu.com/p/26244141 我们前一篇文章(深入PCI与PCIe之一:硬件篇 - 知乎专栏)介绍了PCI和PCIe的硬 ...