UVA12167 Proving Equivalences

题意翻译

题目描述 在数学中,我们常常需要完成若干命题的等价性证明。

例如:有4个命题a,b,c,d,要证明他们是等价的,我们需要证明a<=>b,然后b<=>c,最后c<=>d。注意每次证明是双向的,因此一共完成了6次推导。另一种证明方法是:证明a->b,然后b->c,接着c->d,最后d->a,只须4次证明。

现在你任务是证明 n 个命题全部等价,且你的朋友已经为你作出了m次推导(已知每次推导的内容),你至少还需做几次推导才能完成整个证明。

输入数据 有T(T<=100)组数据,每组数据第一行为两个整数n和m(1<=n<=20000, 1<=m<=50000),即命题数和已完成的推导个数(编号为1..n)。以下m行每行包含两个整数s1和s2(1<=s1,s2<=n,s1!=s2),表明已经证明了s1->s2。

输出数据 输出还需要做推导数的最小值。

感谢@hicc0305 提供的翻译


错误日志: 没有特判 \(numc = 1\) (即任意两点互通)时答案为 \(0\) 的情况


Solution

强联通分量搞成 \(DAG\) , 因为需要加边把图变为一个大强联通分量, 考虑出度和入度为 \(0\) 的点的数量, 这些点无法被到达或无法到达其他点, 输出计数的较大值即可满足所有点互达

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define cln(s, v) memset(s, v, sizeof(s))
typedef long long LL;
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 1000019,INF = 1e9 + 19;
int head[maxn],nume = 1;
struct Node{
int v,dis,nxt;
}E[maxn << 3];
void add(int u,int v,int dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
int DFN[maxn], LOW[maxn], INDEX;
int numc, col[maxn];
bool ins[maxn];
int S[maxn], top;
void Tarjan(int u){
DFN[u] = LOW[u] = ++INDEX;
S[++top] = u;ins[u] = 1;
for(int i = head[u];i;i = E[i].nxt){
int v = E[i].v;
if(!DFN[v])Tarjan(v), LOW[u] = min(LOW[u], LOW[v]);
else if(ins[v])LOW[u] = min(LOW[u], DFN[v]);
}
if(DFN[u] == LOW[u]){
numc++;
while(S[top + 1] != u){
col[S[top]] = numc;
ins[S[top--]] = 0;
}
}
}
int ing[maxn], outg[maxn];
void init(){
cln(head, 0), nume = 1;
INDEX = 0, cln(DFN, 0), cln(LOW, 0);
cln(col, 0), numc = 0;
cln(ing, 0), cln(outg, 0);
}
int T, num, nr;
int main(){
T = RD();
while(T--){
init();
num = RD();nr = RD();
for(int i = 1;i <= nr;i++){
int u = RD(), v = RD();
add(u, v, 0);
}
for(int i = 1;i <= num;i++)if(!DFN[i])Tarjan(i);
if(numc == 1){printf("0\n");continue;}
for(int u = 1;u <= num;u++){
for(int i = head[u];i;i = E[i].nxt){
int v = E[i].v;
if(col[u] != col[v]){
ing[col[v]]++;
outg[col[u]]++;
}
}
}
int in = 0, out = 0;
for(int i = 1;i <= numc;i++){
if(ing[i] == 0)in++;
if(outg[i] == 0)out++;
}
printf("%d\n", max(in, out));
}
return 0;
}

UVA12167 Proving Equivalences的更多相关文章

  1. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  2. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  3. Proving Equivalences(加多少边使其强联通)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  4. UVALive - 4287 - Proving Equivalences(强连通分量)

    Problem   UVALive - 4287 - Proving Equivalences Time Limit: 3000 mSec Problem Description Input Outp ...

  5. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  6. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  7. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  8. Proving Equivalences (hdu 2767 强联通缩点)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  9. HDU2767 Proving Equivalences(加边变为强联通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. Sprint7

    进展:根据昨天查到的资料,今天开始编写闹钟部分的代码,主要实现了闹钟添加事件显示时间主界面.

  2. Beta后续感想/吐槽

    感想 磨人的软工实践终于结束了 艰难的度过了一学期,还是写点什么纪念一下吧. 大一大二的时候就听说软工实践是魔鬼般的锻炼,于是当年不知天高地厚的我是很期待的,终于,我大三了. 后来,我长大了. alp ...

  3. 25_IO_第25天(Properties、序列化流、打印流、CommonsIO)_讲义

    今日内容介绍 1.Properties集合 2.序列化流与反序列化流 3.打印流 4.commons-IO 01Properties集合的特点 * A: Properties集合的特点 * a: Pr ...

  4. iOS- Swift:指触即开,如何集成Touch ID指纹识别功能

    1.前言 随着移动支付时代的到来,Touch ID 指纹验证迅速被支付宝,微信钱包普及,相信各位朋友使用后也大呼方便.之前写了篇关于iOS9的3D Touch的集成使用,有朋友在我博客下提到,让我写一 ...

  5. *** error 65: access violation at C:0x001B : no 'execute/read' permission

    转自:http://blog.csdn.net/chenqiai0/article/details/7827071 很多人在进行串口调试的时候会遇到这个问题,请大家略看我的代码,解决方法在其中 //实 ...

  6. .NET 类库研究必备参考 扣丁格鲁

    .NET 类库的强大让我们很轻松的解决常见问题,作为一个好专研的程序员,为了更上一层楼,研究CLR的基础类库实现是快速稳定的捷径. 一般场景下,采用 Reflector可以反射出.NET 的部分实现出 ...

  7. 初识asp

    1.ASP(Active Server Pages 动态服务器页面)是一种生成动态交互性网页的强有力工具 <!DOCTYPE html> <html> <body> ...

  8. PAT 1074 宇宙无敌加法器

    https://pintia.cn/problem-sets/994805260223102976/problems/994805263297527808 地球人习惯使用十进制数,并且默认一个数字的每 ...

  9. linux创建账户并自动生成主目录和主目录下的文件

    # useradd -d /home/test -m test; 然后给test设置密码. # passwd test; 1. useradd 添加用户或更新新创建用户的默认信息 语法:useradd ...

  10. IPV6 简单总结

    1. 转帖别人的内容 来源:https://www.2cto.com/net/201112/114937.html 2. 本地用IPV6单播地址 (包括链路本地单播地址 和 站点本地单播地址) 2.1 ...