题面

Bzoj

题解

很显然,我们只需要考虑单独取线段上方的情况,对于下方的把坐标取反再做一遍即可(因为我们只关心最终的答案)

建立树状数组维护一个横坐标区间内有多少个点,维护双向链表实现查询一个点左(右)横坐标最大(小)的与它相同的点。

首先枚举没有取到的颜色,找出所有不包含这种颜色的区间,更新答案。

接着考虑两个相同颜色的点的贡献,按照纵坐标从大到小枚举所有的点,分别在树状数组和双向链表中删除当前点,并利用这个点左右两边和它颜色相同的点之间的区间内点的个数更新答案。

#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::sort; using std::swap;
using std::unique; using std::lower_bound;
typedef long long ll; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 1e5 + 10;
int T, n, K, x[N], ans;
struct data { int x, y, z, id; } p[N];
int disc[N], t[N];//树状数组
int last[N], l[N], r[N];//双向链表 void add (int x, int y) { while(x <= n + 1) t[x] += y, x += (x & -x); }
int query (int x) { int y = 0; while(x) y += t[x], x -= (x & -x); return y; }
inline bool cmpx(const data &a, const data &b) { return a.x < b.x; }
inline bool cmpy(const data &a, const data &b) { return a.y < b.y; }
void update(int l, int r) {
if(l > r) return ;
int tmp = query(r) - query(l - 1);
ans = max(tmp, ans);
} void doit () {
x[0] = 0, x[n + 1] = n + 1;
memset(last, 0, sizeof last), memset(t, 0, sizeof t);
sort(&p[1], &p[n + 1], cmpx);
for(int i = 1; i <= n; ++i) add(p[i].x, 1);
for(int i = 1; i <= n; ++i) {
int t = p[i].id, L= last[p[i].z];
l[t] = L, r[t] = n + 1;
if(L) r[L] = t;
update(x[L] + 1, x[t] - 1);
last[p[i].z] = t;
}
for(int i = 1; i <= K; ++i)
update(x[last[i]] + 1, n + 1);
sort(&p[1], &p[n + 1], cmpy);
for(int i = 1, j = 1; i <= n; ++i) {
int t = p[i].id;
while(j <= n && p[j].y == p[i].y) add(p[j].x, - 1), ++j;
l[r[t]] = l[t], r[l[t]] = r[t];
update(x[l[t]] + 1, x[r[t]] - 1);
}
} int main () {
read(T);
while(T--) {
ans = 0, read(n), read(K); int m = n;
for(int i = 1; i <= n; ++i)
read(p[i].x), read(p[i].y), read(p[i].z), p[i].id = i;
for(int i = 1; i <= n; ++i)
disc[i] = p[i].x;
sort(&disc[1], &disc[m + 1]), m = unique(&disc[1], &disc[m + 1]) - disc - 1;
for(int i = 1; i <= n; ++i) {
p[i].x = lower_bound(&disc[1], &disc[m + 1], p[i].x) - disc;
x[i] = p[i].x;
}
doit(); for(int i = 1; i <= n; ++i) p[i].y = -p[i].y; doit();
printf("%d\n", ans);
}
return 0;
}

Bzoj4548 小奇的糖果(链表+树状数组)的更多相关文章

  1. 【bzoj4548】小奇的糖果 STL-set+树状数组

    题目描述 平面上有n个点,每个点有一种颜色.对于某一条线段,选择所有其上方或下方的点.求:在不包含所有颜色的点的前提下,选择的点数最多是多少.(本题中如果存在某颜色没有相应的点,那么选择任何线段都不算 ...

  2. 【题解】BZOJ4548 小奇的糖果(树状数组)

    [题解]BZOJ4548 小奇的糖果(树状数组) 说在前面:我有个同学叫小奇,他有一个朋友叫达达,达达特爱地理和旅游,初中经常AK地理,好怀恋和他已经达达一起到当时初中附近许多楼盘的顶楼逛的时光... ...

  3. 【BZOJ4548】小奇的糖果 set(链表)+树状数组

    [BZOJ4548]小奇的糖果 Description 有 N 个彩色糖果在平面上.小奇想在平面上取一条水平的线段,并拾起它上方或下方的所有糖果.求出最多能够拾起多少糖果,使得获得的糖果并不包含所有的 ...

  4. BZOJ4548 小奇的糖果

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  5. 【题解】 BZOJ4548 小奇的糖果

    本文同步在学弟ZCDHJ的个人博客发布,审核需要一段时间. 传送门 考虑题目中获得的糖果并不包含所有的颜色这句话,发现相当于我们可以直接选取某一个颜色强制不能选(这样子一定最优). 然后就可以考虑分开 ...

  6. 【BZOJ3295】【块状链表+树状数组】动态逆序对

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  7. HH的项链题解(离线思想+链表+树状数组)

    本人第一篇博客重磅推出!!! 希望各位朋友以后多多捧场也多给写意见(我个人喜欢把题解写得啰嗦一点,因为这样方便理解,各位巨佬勿喷) 来讲一道提高+/省选-的骚题:HH的项链(这个HH你理解成皇后呵呵哈 ...

  8. 【Luogu】P1972HH的项链(链表+树状数组)

    题目链接 难题,所以会讲得细一些. 首先我们想如何统计区间[l,r]内不同贝壳的个数. 第一个思路就是线段树/树状数组,query(1,r)-query(1,l-1)对不对? 然而这样是不对的. 然后 ...

  9. 算法笔记求序列A每个元素左边比它小的数的个数(树状数组和离散化)

    #include <iostream> #include <algorithm> #include <cstring> using namespace std ; ...

随机推荐

  1. HDU 2571 命运 (入门dp)

    题目链接 题意:二维矩阵,左上角为起点,右下角为终点,如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) ,其中k>1.问最大路径和. 题解:入门dp,注意负 ...

  2. GreenTrend

    ExpertforSQLServer(4.7.2)和ZhuanCloud(1.0.0)工具收集内容(在个人笔记本上测试) --SZC_Info.txt :: SQL专家云 v1. :: 开始收集 :: ...

  3. css的盒模型手机端兼容写法应该是啥样的呢?

    前言:刚刚接触css3的盒模型,感觉对于解决水平垂直居中.固定宽度/高度和可变宽度/高度同时存在这样的问题很有效.但是最近在看一个腾讯手机端框架(Frozen UI )的时候发现一个很神奇的多行文字截 ...

  4. 【codeforces】【比赛题解】#915 Educational CF Round 36

    虽然最近打了很多场CF,也涨了很多分,但是好久没写CF的题解了. 前几次刚刚紫名的CF,太伤感情了,一下子就掉下来了,不懂你们Div.1. 珂学的那场我只做了第一题……悲伤. 这次的Education ...

  5. Linux设备驱动程序学习 高级字符驱动程序操作[阻塞型I/O和非阻塞I/O]【转】

    转自:http://blog.csdn.net/jacobywu/article/details/7475432 阻塞型I/O和非阻塞I/O 阻塞:休眠 非阻塞:异步通知 一 休眠 安全地进入休眠的两 ...

  6. REX系统2

    REX(Real Time Executive)是一个面向嵌入式应用的,简单高效的,抢先式,多任务实时操作系统,支持基于优先级的任务调度算法(支持优先级反转).它提供了任务控制,任务同步,互斥,定时器 ...

  7. 系统架构之负载均衡【F5\nginx\LVS\DNS轮询\】

    在做系统架构规划的时候,负载均衡,HA(高可用性集群,是保证业务连续性的有效解决方案,一般有两个或两个以上的节点,且分为活动节点及备用节点,当活动节点出现故障的时候,由备用节点接管)都是经常需要考虑的 ...

  8. openjudge-NOI 2.5-1756 八皇后

    题目链接:http://noi.openjudge.cn/ch0205/1756/ 题解: 上一道题稍作改动…… #include<cstdio> #include<algorith ...

  9. 十二、springcloud之展示追踪数据 Sleuth+zipkin

    一.Zipkin简介 Zipkin是Twitter的一个开源项目,它基于Google Dapper实现.我们可以使用它来收集各个服务器上请求链路的跟踪数据,并通过它提供的REST API接口来辅助我们 ...

  10. 十、springcloud之Consul注销实例

    @Autowired //com.ecwid.consul.v1.ConsulClient private ConsulClient consulClient; @PostMapping(" ...