1. 问题描述

子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串

  • cnblogs
  • belong

比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cnblogs, belong),最长公共子串为lo(cnblogs, belong)。

2. 求解算法

对于母串X=<x1,x2,⋯,xm>X=<x1,x2,⋯,xm>, Y=<y1,y2,⋯,yn>Y=<y1,y2,⋯,yn>,求LCS与最长公共子串。

暴力解法

假设 m<nm<n, 对于母串XX,我们可以暴力找出2m2m个子序列,然后依次在母串YY中匹配,算法的时间复杂度会达到指数级O(n∗2m)O(n∗2m)。显然,暴力求解不太适用于此类问题。

动态规划

假设Z=<z1,z2,⋯,zk>Z=<z1,z2,⋯,zk>是XX与YY的LCS, 我们观察到

•   如果xm=ynxm=yn,则zk=xm=ynzk=xm=yn,有Zk−1Zk−1是Xm−1Xm−1与Yn−1Yn−1的LCS;

•   如果xm≠ynxm≠yn,则ZkZk是XmXm与Yn−1Yn−1的LCS,或者是Xm−1Xm−1与YnYn的LCS。

因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。

DP求解LCS

用二维数组c[i][j]记录串x1x2⋯xix1x2⋯xi与y1y2⋯yjy1y2⋯yj的LCS长度,则可得到状态转移方程

代码实现

public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
} else {
c[i][j] = max(c[i - 1][j], c[i][j - 1]);
}
}
}
return c[len1][len2];
}

  

DP求解最长公共子串

前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i,j]c[i,j]用来记录具有这样特点的子串——结尾为母串x1x2⋯xix1x2⋯xi与y1y2⋯yjy1y2⋯yj的结尾——的长度。

得到转移方程:

最长公共子串的长度为 max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}。

代码实现

public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int result = 0; //记录最长公共子串长度
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
result = max(c[i][j], result);
} else {
c[i][j] = 0;
}
}
}
return result;
}

3. 参考资料

[1] cs2035, Longest Common Subsequence.
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列.
[3] GeeksforGeeks, Dynamic Programming | Set 29 (Longest Common Substring).

如需转载,请注明作者及出处.
作者:Treant

动态规划求最长公共子序列(Longest Common Subsequence, LCS)的更多相关文章

  1. 最长公共子序列(Longest common subsequence)

    问题描述: 给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子序列.(子序列中的字符不要求连续) 这道题可以 ...

  2. HDU 1243 反恐训练营 (动态规划求最长公共子序列)

    反恐训练营 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  3. 利用后缀数组(suffix array)求最长公共子串(longest common substring)

    摘要:本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法.该算法虽然不及动态规划和后缀树算法的复杂度低,但其 ...

  4. 算法实践--最长公共子序列(Longest Common Subsquence)

    什么是最长公共子序列 X=ACCG Y=CCAGCA 长度为1的公共子序列: {A} {C} {G} 长度为2的公共子序列:{AC} {CC} {CG} {AG} 长度为3的公共子序列:{ACG} 长 ...

  5. Coincidence (动态规划求最长公共子序列)(王道)

    题目描述: Find a longest common subsequence of two strings. 输入: First and second line of each input case ...

  6. UVA10100:Longest Match(最长公共子序列)&&HDU1458Common Subsequence ( LCS)

    题目链接:http://blog.csdn.net/u014361775/article/details/42873875 题目解析: 给定两行字符串序列,输出它们之间最大公共子单词的个数 对于给的两 ...

  7. 【转】动态规划:最长递增子序列Longest Increasing Subsequence

    转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...

  8. 最长公共子串(Longest common substring)

    问题描述: 给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子串.(子串中的字符要求连续) 这道题和最长公共 ...

  9. HDU 1159 Common Subsequence (动态规划、最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. centos6.5 卸载php

    1.删除php,删除之前需要查看php依赖包,使用 rpm -qa|grep php [root@localhost ~]# rpm -qa |grep phpphp55w-mysql-5.5.38- ...

  2. python中使用heapq查看最大与最小的N个元素列表

    怎么从一个集合中获取最大或最小的N个元素列表? heapq模块有两个函数:nlargest() 和 nsmallest() 可以完美解决这个问题. In [39]: import heapq In [ ...

  3. Spring MVC学习笔记——登录和异常处理

    1.在WEN-INF文件夹下面,添加一个login.jsp文件 <%@ page language="java" contentType="text/html; c ...

  4. 2016总结-->生活不只有技术和代码,还有诗和远方的田野。

    生活不只有技术和代码,还有诗和远方的田野. //---------------------------技术 1.应用框架的架构----->收银系统 一般情况开发中常用activity+fragm ...

  5. RabbitMQ学习

    参考链接:http://www.cnblogs.com/leocook/p/mq_rabbitmq_0.html

  6. 01 HDFS 简介

    01.HDFS简介 大纲: hadoop2 介绍 HDFS概述 HDFS读写流程 hadoop2介绍 框架的核心设计是HDFS(存储),mapReduce(分布式计算),YARN(资源管理),为海量的 ...

  7. C++ 之namespace常见用法

    一.背景 需要使用Visual studio的C++,此篇对namespace的常用用法做个记录. 二.正文 namespace通常用来给类或者函数做个区间定义,以使编译器能准确定位到适合的类或者函数 ...

  8. web 安全杂谈

    以前写过一篇关于session.cookie的博文,都是简单的介绍.不过session和cookie和网络安全可有着密切的关系. 今天主要从这几个方面总结下最近学到的东西: 1. session 两种 ...

  9. 关于JavaScript初级的知识点一(持续更新 )

    自己刚开始接触JS这是自己一个多月以来的一些总结和回顾. 一.什么是js? js是一种弱类型的脚本语言,是HTML的3大组成部分之一.HTML标签 CSS样式 JS脚本. 二.js的5种基本数据类型 ...

  10. php多线程操作同一文件-待续

    同意文件操作同意文件的问题在于逻辑有些地方不合适,如果多个线程同时写入,在不加锁的情况下,可能导致得到结果不如意,为了安全,和脏读(数据库的词),应该使用排他锁,这就意味着每次只能被一个线程操作.其他 ...