1. 问题描述

子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串

  • cnblogs
  • belong

比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cnblogs, belong),最长公共子串为lo(cnblogs, belong)。

2. 求解算法

对于母串X=<x1,x2,⋯,xm>X=<x1,x2,⋯,xm>, Y=<y1,y2,⋯,yn>Y=<y1,y2,⋯,yn>,求LCS与最长公共子串。

暴力解法

假设 m<nm<n, 对于母串XX,我们可以暴力找出2m2m个子序列,然后依次在母串YY中匹配,算法的时间复杂度会达到指数级O(n∗2m)O(n∗2m)。显然,暴力求解不太适用于此类问题。

动态规划

假设Z=<z1,z2,⋯,zk>Z=<z1,z2,⋯,zk>是XX与YY的LCS, 我们观察到

•   如果xm=ynxm=yn,则zk=xm=ynzk=xm=yn,有Zk−1Zk−1是Xm−1Xm−1与Yn−1Yn−1的LCS;

•   如果xm≠ynxm≠yn,则ZkZk是XmXm与Yn−1Yn−1的LCS,或者是Xm−1Xm−1与YnYn的LCS。

因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。

DP求解LCS

用二维数组c[i][j]记录串x1x2⋯xix1x2⋯xi与y1y2⋯yjy1y2⋯yj的LCS长度,则可得到状态转移方程

代码实现

public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
} else {
c[i][j] = max(c[i - 1][j], c[i][j - 1]);
}
}
}
return c[len1][len2];
}

  

DP求解最长公共子串

前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i,j]c[i,j]用来记录具有这样特点的子串——结尾为母串x1x2⋯xix1x2⋯xi与y1y2⋯yjy1y2⋯yj的结尾——的长度。

得到转移方程:

最长公共子串的长度为 max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}。

代码实现

public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int result = 0; //记录最长公共子串长度
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
result = max(c[i][j], result);
} else {
c[i][j] = 0;
}
}
}
return result;
}

3. 参考资料

[1] cs2035, Longest Common Subsequence.
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列.
[3] GeeksforGeeks, Dynamic Programming | Set 29 (Longest Common Substring).

如需转载,请注明作者及出处.
作者:Treant

动态规划求最长公共子序列(Longest Common Subsequence, LCS)的更多相关文章

  1. 最长公共子序列(Longest common subsequence)

    问题描述: 给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子序列.(子序列中的字符不要求连续) 这道题可以 ...

  2. HDU 1243 反恐训练营 (动态规划求最长公共子序列)

    反恐训练营 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  3. 利用后缀数组(suffix array)求最长公共子串(longest common substring)

    摘要:本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法.该算法虽然不及动态规划和后缀树算法的复杂度低,但其 ...

  4. 算法实践--最长公共子序列(Longest Common Subsquence)

    什么是最长公共子序列 X=ACCG Y=CCAGCA 长度为1的公共子序列: {A} {C} {G} 长度为2的公共子序列:{AC} {CC} {CG} {AG} 长度为3的公共子序列:{ACG} 长 ...

  5. Coincidence (动态规划求最长公共子序列)(王道)

    题目描述: Find a longest common subsequence of two strings. 输入: First and second line of each input case ...

  6. UVA10100:Longest Match(最长公共子序列)&&HDU1458Common Subsequence ( LCS)

    题目链接:http://blog.csdn.net/u014361775/article/details/42873875 题目解析: 给定两行字符串序列,输出它们之间最大公共子单词的个数 对于给的两 ...

  7. 【转】动态规划:最长递增子序列Longest Increasing Subsequence

    转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...

  8. 最长公共子串(Longest common substring)

    问题描述: 给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子串.(子串中的字符要求连续) 这道题和最长公共 ...

  9. HDU 1159 Common Subsequence (动态规划、最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. [原创] C# dynamic拼接Json串

    using Newtonsoft.Json; 之前拼接两个json串,是用的这样的代码 , json1.Length - ); json2 = json2.Insert(json2 - , tmp); ...

  2. dict与list的in 操作的速度

    今天刷一道题,计算一串数字中其中两个数字相加等于目标值的题目,且取其中最早的两个数字(最后一个数字的位置靠前). 如[1,25,32,4,3,6,9,5]  targer:9  输出 [3,6]   ...

  3. jquery1.7.2的源码分析(四)$.Deferred(2)

    jQuery.Callbacks = function( flags ) { // Convert flags from String-formatted to Object-formatted // ...

  4. eclipse设置快速提示符

    省掉废话,一个快速提示符真的能快速地提高编程效率. 下面介绍如何设置eclipse的快速提示符. 步骤如下: Windows --> preferences --> java --> ...

  5. Android之下拉刷新的ListView

    不废话,代码里面注释很详细,直接上代码: 自定义的RefreshableListView代码: public class RefreshableListView extends ListView im ...

  6. <c ss高效开发实战>看完了,Bootstrap学习是关键

    Bootstrap果真给我们带来了很多便利,学习CSS,必须要掌握很多框架和快速学习的方法. 这本书看完了,也写过几篇读书笔记,墙裂推荐.不上书封面了,只上书的导图. 这里说几点学习CSS的心得 1. ...

  7. Workflow 中做拒绝操作时强制输入拒绝信息

    在做AP发票审批驳回时,客户要求必须强制输入拒绝原因,代码如下: PROCEDURE Validate_Response ( Itemtype IN VARCHAR2, Itemkey IN VARC ...

  8. iOS9,导航控制器中的子控制器设置StatusBar状态失效的问题

    iOS9之前控制StatusBar的两种方式: 第一种方式:全局控制StatusBar 1. 在项目的Info.plist文件里设置UIViewControllerBasedStatusBarAppe ...

  9. sql 取新的列名含义

    SELECT a.*, 1 DELETABLE, '' YEAR_ON, '' MONTH_ON, TOOL_STATUS status0 FROM TOOL a 说明:其中tool字段有tool_s ...

  10. Tsinsen A1486. 树(王康宁)

    Description 一棵树,问至少有 \(k\) 个黑点的路径最大异或和. Sol 点分治. 用点分治找重心控制树高就不说了,主要是对答案的统计的地方. 将所有路径按点的个数排序. 可以发现当左端 ...