动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述
子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串
- cnblogs
- belong
比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cnblogs, belong),最长公共子串为lo(cnblogs, belong)。
2. 求解算法
对于母串X=<x1,x2,⋯,xm>X=<x1,x2,⋯,xm>, Y=<y1,y2,⋯,yn>Y=<y1,y2,⋯,yn>,求LCS与最长公共子串。
暴力解法
假设 m<nm<n, 对于母串XX,我们可以暴力找出2m2m个子序列,然后依次在母串YY中匹配,算法的时间复杂度会达到指数级O(n∗2m)O(n∗2m)。显然,暴力求解不太适用于此类问题。
动态规划
假设Z=<z1,z2,⋯,zk>Z=<z1,z2,⋯,zk>是XX与YY的LCS, 我们观察到
• 如果xm=ynxm=yn,则zk=xm=ynzk=xm=yn,有Zk−1Zk−1是Xm−1Xm−1与Yn−1Yn−1的LCS;
• 如果xm≠ynxm≠yn,则ZkZk是XmXm与Yn−1Yn−1的LCS,或者是Xm−1Xm−1与YnYn的LCS。
因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。
DP求解LCS
用二维数组c[i][j]记录串x1x2⋯xix1x2⋯xi与y1y2⋯yjy1y2⋯yj的LCS长度,则可得到状态转移方程
代码实现
- public static int lcs(String str1, String str2) {
- int len1 = str1.length();
- int len2 = str2.length();
- int c[][] = new int[len1+1][len2+1];
- for (int i = 0; i <= len1; i++) {
- for( int j = 0; j <= len2; j++) {
- if(i == 0 || j == 0) {
- c[i][j] = 0;
- } else if (str1.charAt(i-1) == str2.charAt(j-1)) {
- c[i][j] = c[i-1][j-1] + 1;
- } else {
- c[i][j] = max(c[i - 1][j], c[i][j - 1]);
- }
- }
- }
- return c[len1][len2];
- }
DP求解最长公共子串
前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i,j]c[i,j]用来记录具有这样特点的子串——结尾为母串x1x2⋯xix1x2⋯xi与y1y2⋯yjy1y2⋯yj的结尾——的长度。
得到转移方程:

最长公共子串的长度为 max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}。
代码实现
- public static int lcs(String str1, String str2) {
- int len1 = str1.length();
- int len2 = str2.length();
- int result = 0; //记录最长公共子串长度
- int c[][] = new int[len1+1][len2+1];
- for (int i = 0; i <= len1; i++) {
- for( int j = 0; j <= len2; j++) {
- if(i == 0 || j == 0) {
- c[i][j] = 0;
- } else if (str1.charAt(i-1) == str2.charAt(j-1)) {
- c[i][j] = c[i-1][j-1] + 1;
- result = max(c[i][j], result);
- } else {
- c[i][j] = 0;
- }
- }
- }
- return result;
- }
3. 参考资料
[1] cs2035, Longest Common Subsequence.
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列.
[3] GeeksforGeeks, Dynamic Programming | Set 29 (Longest Common Substring).
动态规划求最长公共子序列(Longest Common Subsequence, LCS)的更多相关文章
- 最长公共子序列(Longest common subsequence)
问题描述: 给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子序列.(子序列中的字符不要求连续) 这道题可以 ...
- HDU 1243 反恐训练营 (动态规划求最长公共子序列)
反恐训练营 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- 利用后缀数组(suffix array)求最长公共子串(longest common substring)
摘要:本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法.该算法虽然不及动态规划和后缀树算法的复杂度低,但其 ...
- 算法实践--最长公共子序列(Longest Common Subsquence)
什么是最长公共子序列 X=ACCG Y=CCAGCA 长度为1的公共子序列: {A} {C} {G} 长度为2的公共子序列:{AC} {CC} {CG} {AG} 长度为3的公共子序列:{ACG} 长 ...
- Coincidence (动态规划求最长公共子序列)(王道)
题目描述: Find a longest common subsequence of two strings. 输入: First and second line of each input case ...
- UVA10100:Longest Match(最长公共子序列)&&HDU1458Common Subsequence ( LCS)
题目链接:http://blog.csdn.net/u014361775/article/details/42873875 题目解析: 给定两行字符串序列,输出它们之间最大公共子单词的个数 对于给的两 ...
- 【转】动态规划:最长递增子序列Longest Increasing Subsequence
转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...
- 最长公共子串(Longest common substring)
问题描述: 给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子串.(子串中的字符要求连续) 这道题和最长公共 ...
- HDU 1159 Common Subsequence (动态规划、最长公共子序列)
Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
随机推荐
- 几种常见的Shell
Unix/Linux上常见的Shell脚本解释器有bash.sh.csh.ksh等,习惯上把它们称作一种Shell.我们常说有多少种Shell,其实说的是Shell脚本解释器. bash bash是L ...
- 图解Netty之Pipeline、channel、Context之间的数据流向。
声明:本文为原创博文,禁止转载. 以下所绘制图形均基于Netty4.0.28版本. 一.connect(outbound类型事件) 当用户调用channel的connect时,会发起一个 ...
- ip地址库 新浪,淘宝
原文连接地址:http://www.9958.pw/post/city_ip function getAddressFromIp($ip){ $urlTaobao = 'http://ip.taoba ...
- 报错:init: Could not find wglGetExtensionsStringARB!
如下操作即可恢复:
- WCF学习第二篇:WCF 配置架构。这有助于对wcf配置的理解和记忆
使用 Windows Communication Foundation (WCF) 配置元素,您可以配置 WCF 服务和客户端应用程序. 可以使用配置编辑器工具 (SvcConfigEditor.ex ...
- php-fpm启动,重启,终止操作
最近安装了mysqli扩展,重启了nginx后,phpinfo()没有显示出mysqli,后来搞不出原因,直接使用了pdo连接数据库.直到今天安装redis后phpinfo()没有显示redis,内心 ...
- 关于struts2的过滤器和mybatis的插件的分析
网上一搜,发现一篇写的非常棒的博文,就直接复制过来了,供以后复习使用. 前辈博文链接:共三篇: http://jimgreat.iteye.com/blog/1616671: http://jimgr ...
- python网络编程学习笔记(三):socket网络服务器(转载)
1.TCP连接的建立方法 客户端在建立一个TCP连接时一般需要两步,而服务器的这个过程需要四步,具体见下面的比较. 步骤 TCP客户端 TCP服务器 第一步 建立socket对象 建立socket对 ...
- 输出 Office 报表
以 word 为例: 将 word 存为 Word2003 XML,其中苹果等部分即是 xml 如下: 服务器端通常输出 HTML,HTML 是文本,XML也是文本,可以简单的套用服务器端网页的思路. ...
- s:if 判断
判断 ArrayList size 是否为0 <s:if test="list.size==0"> <s:if> <s:else> </s ...