Question 1

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and two columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7]. There are many options for the second column [x,y,z]. Write down those constraints on x, y, and z. Then, identi fy in the list below the one column that could be [x,y,z]. All components are computed to three decimal places, so the constraints may be satisfied only to a close approximation.
 
Your Answer   Score Explanation
[.485, -.485, .728]      
[.702, -.702, .117] Correct 1.00  
[-.702, .117, .702]      
[-.548, .401, .273]      
Total   1.00 / 1.00

Answer:

1. x^2+y^2+z^2 = 1

2. 2x/7+3y/7+6z/7 = 0

Question 2

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and three columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7], and another is [6/7, 2/7, -3/7]. Let the third column be [x,y,z]. Since the length of the vector [x,y,z] must be 1, there is a constraint that x2+y2+z2 = 1. However, there are other constraints, and these other constraints can be used to deduce facts about the ratios among x, y, and z. Compute these ratios, and then identify one of them in the list below.
 
Your Answer   Score Explanation
y = -3z Correct 1.00  
y = 3z      
z = -3y      
z = 3y      
Total  

1.00 / 1.00

Answer:

2x+3y+6z = 0

6x+2y-3z = 0

The 3th col would be something like [-3 6 -2]

Question 3

Suppose we have three points in a two dimensional space: (1,1), (2,2), and (3,4). We want to perform PCA on these points, so we construct a 2-by-2 matrix whose eigenvectors are the directions that best represent these three points. Construct this matrix and identify, in the list below, one of its elements.
Your Answer   Score Explanation
19      
12      
17 Correct 1.00  
22      
Total   1.00 / 1.00

Question 4

Find, in the list below, the vector that is orthogonal to the vector [1,2,3]. Note: the interesting concept regarding eigenvectors is "orthonormal," that is unit vectors that are orthogonal. However, this question avoids using unit vectors to make the calculations simpler.
 
Your Answer   Score Explanation
[-1, -1, 1] Correct 1.00  
[0, 2, -1]      
[-1, 1, -1]      
[1, 1/2, 1/3]      
Total   1.00 / 1.00

Answer:

orthogonal : [1 2 3] * [-1 -1 1]^(-1) = [-1 -2 3];

-1-2+3 = 0

[Big Data] Week4B (Basic)的更多相关文章

  1. PHP 笔记一(systax/variables/echo/print/Data Type)

    PHP stands for "Hypertext Preprocessor" ,it is a server scripting language. What Can PHP D ...

  2. Data Transformation / Learning with Counts

    机器学习中离散特征的处理方法 Updated: August 25, 2016 Learning with counts is an efficient way to create a compact ...

  3. Sending form data

    https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data This arti ...

  4. 基于ambari2.4.0进行二次开发

    目录 线上修改 源码结构 技术点 编译环境的搭建  安装samba 安装编译环境 整体编译 ambari-web的编译 WEB内容修改 wiki:https://cwiki.apache.org/co ...

  5. iOS基于MVC的项目重构总结

    关于MVC的争论 关于MVC的争论已经有很多,对此我的观点是:对于iOS开发中的绝大部分场景来说,MVC本身是没有问题的,你认为的MVC的问题,一定是你自己理解的问题(资深架构师请自动忽略本文). 行 ...

  6. 转:中间人攻击利用框架bettercap测试

    0x00前言 上篇提到内网渗透很有趣,这次就从一款新工具说起: bettercap 0x01简介 bettercap可用来实现各种中间人攻击,模块化,便携.易扩展 0x02特点 提到中间人攻击,最知名 ...

  7. I am Nexus Master!(虽然只是个模拟题。。。但仍想了很久!)

    I am Nexus Master!  The 13th Zhejiang University Programming Contest 参见:http://www.bnuoj.com/bnuoj/p ...

  8. CKEditor Html Helpers for ASP.NET MVC3 Razor/WebForms Views

    一.原生方法: 在 razor 中 使用Fckeditor 编辑内容,需要引入js <script src="@Url.Content("~/fckeditor/fckedi ...

  9. UESTC 1852 Traveling Cellsperson

    找规律水题... Traveling Cellsperson Time Limit: 1000ms Memory Limit: 65535KB This problem will be judged ...

随机推荐

  1. JAVA规范

    ---------------------------------------------------------- Web Service技术 --------------------------- ...

  2. 关于zip伪加密

    创建一个zip文件 然后用winhex打开 可以看到第二个PK头的地方对应hex区域有一场串0000000000 在这里的第四个0这里末尾修改成奇数 奇数为加密 偶数为不加密 再去打开就可以看到加密了

  3. eclipse转idea, 快捷键设置

    设置快捷键的途径: 打开idea的配置,找到Keymap,设置为eclipse 另外还要手动设置某些快捷键 上下移动 点击类打开 代码提示 查询 重命名 快速实现接口 回到上一次光标处

  4. MySQL规约(阿里巴巴)

    建表规约 [强制]表达是与否概念的字段,必须使用 is _ xxx 的方式命名,数据类型是 unsigned tinyint ( 1 表示是,0 表示否 ) ,此规则同样适用于 odps 建表. 说明 ...

  5. Codeforces Round #FF (Div. 1) B. DZY Loves Modification 优先队列

    B. DZY Loves Modification 题目连接: http://www.codeforces.com/contest/446/problem/B Description As we kn ...

  6. Codeforces Round #279 (Div. 2) C. Hacking Cypher 机智的前缀和处理

    #include <cstdio> #include <cmath> #include <cstring> #include <ctime> #incl ...

  7. spring---aop(7)---Spring AOP中expose-proxy介绍

    写在前面 expose-proxy.为是否暴露当前代理对象为ThreadLocal模式. SpringAOP对于最外层的函数只拦截public方法,不拦截protected和private方法(后续讲 ...

  8. js异步任务处理方式

    一.es6(es2015)之前:使用原始的callback函数,会陷入回掉地域 this.$http.jsonp('/login', (res) => { this.$http.jsonp('/ ...

  9. 关闭IE8的首次运行自定义设置

    方法一:顺着IE8的提示,一步一步的了解看完或设置完等的,它“推荐”的你应该做的事,然后重新设置首页就行了. 方法二:开始->运行->输入:gpedit.msc->用户配置-> ...

  10. 七问C#关键字const和readonly

    const和readonly经常被用来修饰类的字段,两者有何异同呢? const 1.声明const类型变量一定要赋初值吗? --一定要赋初值 public class Student { publi ...