Question 1

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and two columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7]. There are many options for the second column [x,y,z]. Write down those constraints on x, y, and z. Then, identi fy in the list below the one column that could be [x,y,z]. All components are computed to three decimal places, so the constraints may be satisfied only to a close approximation.
 
Your Answer   Score Explanation
[.485, -.485, .728]      
[.702, -.702, .117] Correct 1.00  
[-.702, .117, .702]      
[-.548, .401, .273]      
Total   1.00 / 1.00

Answer:

1. x^2+y^2+z^2 = 1

2. 2x/7+3y/7+6z/7 = 0

Question 2

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and three columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7], and another is [6/7, 2/7, -3/7]. Let the third column be [x,y,z]. Since the length of the vector [x,y,z] must be 1, there is a constraint that x2+y2+z2 = 1. However, there are other constraints, and these other constraints can be used to deduce facts about the ratios among x, y, and z. Compute these ratios, and then identify one of them in the list below.
 
Your Answer   Score Explanation
y = -3z Correct 1.00  
y = 3z      
z = -3y      
z = 3y      
Total  

1.00 / 1.00

Answer:

2x+3y+6z = 0

6x+2y-3z = 0

The 3th col would be something like [-3 6 -2]

Question 3

Suppose we have three points in a two dimensional space: (1,1), (2,2), and (3,4). We want to perform PCA on these points, so we construct a 2-by-2 matrix whose eigenvectors are the directions that best represent these three points. Construct this matrix and identify, in the list below, one of its elements.
Your Answer   Score Explanation
19      
12      
17 Correct 1.00  
22      
Total   1.00 / 1.00

Question 4

Find, in the list below, the vector that is orthogonal to the vector [1,2,3]. Note: the interesting concept regarding eigenvectors is "orthonormal," that is unit vectors that are orthogonal. However, this question avoids using unit vectors to make the calculations simpler.
 
Your Answer   Score Explanation
[-1, -1, 1] Correct 1.00  
[0, 2, -1]      
[-1, 1, -1]      
[1, 1/2, 1/3]      
Total   1.00 / 1.00

Answer:

orthogonal : [1 2 3] * [-1 -1 1]^(-1) = [-1 -2 3];

-1-2+3 = 0

[Big Data] Week4B (Basic)的更多相关文章

  1. PHP 笔记一(systax/variables/echo/print/Data Type)

    PHP stands for "Hypertext Preprocessor" ,it is a server scripting language. What Can PHP D ...

  2. Data Transformation / Learning with Counts

    机器学习中离散特征的处理方法 Updated: August 25, 2016 Learning with counts is an efficient way to create a compact ...

  3. Sending form data

    https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data This arti ...

  4. 基于ambari2.4.0进行二次开发

    目录 线上修改 源码结构 技术点 编译环境的搭建  安装samba 安装编译环境 整体编译 ambari-web的编译 WEB内容修改 wiki:https://cwiki.apache.org/co ...

  5. iOS基于MVC的项目重构总结

    关于MVC的争论 关于MVC的争论已经有很多,对此我的观点是:对于iOS开发中的绝大部分场景来说,MVC本身是没有问题的,你认为的MVC的问题,一定是你自己理解的问题(资深架构师请自动忽略本文). 行 ...

  6. 转:中间人攻击利用框架bettercap测试

    0x00前言 上篇提到内网渗透很有趣,这次就从一款新工具说起: bettercap 0x01简介 bettercap可用来实现各种中间人攻击,模块化,便携.易扩展 0x02特点 提到中间人攻击,最知名 ...

  7. I am Nexus Master!(虽然只是个模拟题。。。但仍想了很久!)

    I am Nexus Master!  The 13th Zhejiang University Programming Contest 参见:http://www.bnuoj.com/bnuoj/p ...

  8. CKEditor Html Helpers for ASP.NET MVC3 Razor/WebForms Views

    一.原生方法: 在 razor 中 使用Fckeditor 编辑内容,需要引入js <script src="@Url.Content("~/fckeditor/fckedi ...

  9. UESTC 1852 Traveling Cellsperson

    找规律水题... Traveling Cellsperson Time Limit: 1000ms Memory Limit: 65535KB This problem will be judged ...

随机推荐

  1. 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1640  Solved: 962 Description I ...

  2. ARC 067 E - Grouping

    题面在这里! 很显然是个暴力dp. 我们先枚举一下 队伍人数的种类,然后再逆序枚举一下dp数组里的总人数(顺序就会算重),最后枚举一下这种队伍的数量,之后就可以O(1)算方案了. 具体的,O(1)算方 ...

  3. BZOJ 3875: [Ahoi2014]骑士游戏 spfa dp

    3875: [Ahoi2014]骑士游戏 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3875 Description [故事背景] 长 ...

  4. HDU step by step

    section 1 不解释~ section 2 1.2.1 a+b coming #include<stdio.h> long long z,x,y; int main( ) { whi ...

  5. git命令行使用帮助

    克隆代码库 git clone git_project_url 提交代码 git commit -m 'commit messge'

  6. PCI DSS合规建设ASV扫描介绍

    最近查一些Nessus.Nexpose漏洞扫描工具相关资料,工具介绍都会提到一些审计功能,其中最常见的就是PCI DSS合规性审计.从网上找到一篇介绍较详尽的文章,与大家分享. 原文摘自:http:/ ...

  7. OpenVPN原理及实践文章收集(转)

    一.基本理论篇 vpn原理及实现--一般理论 vpn原理及实现--隧道的一种实现 vpn原理及实现--虚拟网卡构建vpn vpn原理及实现--tcp还是udp Linux平台VPN技术概论 Linux ...

  8. EBS安装完成后,对数据库相关配置的改动

    EBS安装完成后,对数据库相关配置的改动 1.转为ASM,数据文件,控制文件,redo log,archived log从文件系统转移至ASM 2.禁用resource manager 由于发现系统的 ...

  9. Ladda 应用提交表单的时候显示loading载入中 包含不同位置,不同效果

    Ladda 应用提交表单的时候显示loading载入中 包含不同位置,不同效果 不同大小.位置,效果,进度条等 演示 XML/HTML Code <article class="exa ...

  10. Installation of NVIDIA Drivers in RHEL/CentOS and Fedora

    1.首先安装所需的软件: # yum groupinstall "Development Tools" # yum install kernel-devel kernel-head ...