Question 1

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and two columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7]. There are many options for the second column [x,y,z]. Write down those constraints on x, y, and z. Then, identi fy in the list below the one column that could be [x,y,z]. All components are computed to three decimal places, so the constraints may be satisfied only to a close approximation.
 
Your Answer   Score Explanation
[.485, -.485, .728]      
[.702, -.702, .117] Correct 1.00  
[-.702, .117, .702]      
[-.548, .401, .273]      
Total   1.00 / 1.00

Answer:

1. x^2+y^2+z^2 = 1

2. 2x/7+3y/7+6z/7 = 0

Question 2

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and three columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7], and another is [6/7, 2/7, -3/7]. Let the third column be [x,y,z]. Since the length of the vector [x,y,z] must be 1, there is a constraint that x2+y2+z2 = 1. However, there are other constraints, and these other constraints can be used to deduce facts about the ratios among x, y, and z. Compute these ratios, and then identify one of them in the list below.
 
Your Answer   Score Explanation
y = -3z Correct 1.00  
y = 3z      
z = -3y      
z = 3y      
Total  

1.00 / 1.00

Answer:

2x+3y+6z = 0

6x+2y-3z = 0

The 3th col would be something like [-3 6 -2]

Question 3

Suppose we have three points in a two dimensional space: (1,1), (2,2), and (3,4). We want to perform PCA on these points, so we construct a 2-by-2 matrix whose eigenvectors are the directions that best represent these three points. Construct this matrix and identify, in the list below, one of its elements.
Your Answer   Score Explanation
19      
12      
17 Correct 1.00  
22      
Total   1.00 / 1.00

Question 4

Find, in the list below, the vector that is orthogonal to the vector [1,2,3]. Note: the interesting concept regarding eigenvectors is "orthonormal," that is unit vectors that are orthogonal. However, this question avoids using unit vectors to make the calculations simpler.
 
Your Answer   Score Explanation
[-1, -1, 1] Correct 1.00  
[0, 2, -1]      
[-1, 1, -1]      
[1, 1/2, 1/3]      
Total   1.00 / 1.00

Answer:

orthogonal : [1 2 3] * [-1 -1 1]^(-1) = [-1 -2 3];

-1-2+3 = 0

[Big Data] Week4B (Basic)的更多相关文章

  1. PHP 笔记一(systax/variables/echo/print/Data Type)

    PHP stands for "Hypertext Preprocessor" ,it is a server scripting language. What Can PHP D ...

  2. Data Transformation / Learning with Counts

    机器学习中离散特征的处理方法 Updated: August 25, 2016 Learning with counts is an efficient way to create a compact ...

  3. Sending form data

    https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data This arti ...

  4. 基于ambari2.4.0进行二次开发

    目录 线上修改 源码结构 技术点 编译环境的搭建  安装samba 安装编译环境 整体编译 ambari-web的编译 WEB内容修改 wiki:https://cwiki.apache.org/co ...

  5. iOS基于MVC的项目重构总结

    关于MVC的争论 关于MVC的争论已经有很多,对此我的观点是:对于iOS开发中的绝大部分场景来说,MVC本身是没有问题的,你认为的MVC的问题,一定是你自己理解的问题(资深架构师请自动忽略本文). 行 ...

  6. 转:中间人攻击利用框架bettercap测试

    0x00前言 上篇提到内网渗透很有趣,这次就从一款新工具说起: bettercap 0x01简介 bettercap可用来实现各种中间人攻击,模块化,便携.易扩展 0x02特点 提到中间人攻击,最知名 ...

  7. I am Nexus Master!(虽然只是个模拟题。。。但仍想了很久!)

    I am Nexus Master!  The 13th Zhejiang University Programming Contest 参见:http://www.bnuoj.com/bnuoj/p ...

  8. CKEditor Html Helpers for ASP.NET MVC3 Razor/WebForms Views

    一.原生方法: 在 razor 中 使用Fckeditor 编辑内容,需要引入js <script src="@Url.Content("~/fckeditor/fckedi ...

  9. UESTC 1852 Traveling Cellsperson

    找规律水题... Traveling Cellsperson Time Limit: 1000ms Memory Limit: 65535KB This problem will be judged ...

随机推荐

  1. 社会主义核心价值观js代码

    效果如下: 代码如下: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  2. bzoj 1590: [Usaco2008 Dec]Secret Message 秘密信息

    1590: [Usaco2008 Dec]Secret Message 秘密信息 Description     贝茜正在领导奶牛们逃跑.为了联络,奶牛们互相发送秘密信息.     信息是二进制的,共 ...

  3. bzoj 1209

    三维凸包裸题. 1.通过volume计算有向体积,判断点与面的位置关系. 2.噪声 /********************************************************* ...

  4. jmeter-分布式部署之负载机的设置

    本文分三个部分: 1.windows下负载机的配置 2.Linux下负载机的配置 3.遇到的问题 *************************************************** ...

  5. SMACH(五)----用户数据UserData类和重映射Remapper类的原理和例子

    用户数据UserData类和重映射Remapper类包含在smach中的user_data.py文件中实现,该博文主要介绍其原理和例子 UserData主要用于状态之间的数据传递,包括数据的输入inp ...

  6. 如何从Windows远程上传文件到Linux(例如CentOS 7)

    一.先看Linux系统是否安装有vsftp软件(vs是very secure的意思) [root@localhost /]# rpm -qa | grep vsftpdvsftpd-3.0.2-9.e ...

  7. golang 实现轻量web框架

    经常看到很多同学在打算使用go做开发的时候会问用什么http框架比较好.其实go的 http package 非常强大,对于一般的 http rest api 开发,完全可以不用框架就可以实现想要的功 ...

  8. as 汇编器

    [root@localhost ~]# cat .s .file "write.s" .section .rodata hello: .string "hello, wo ...

  9. 解析本内置Linux目录结构

    使用声明:1.此版本采用官方原版ISO+俄罗斯HunterTik 的Debian包制作而成2.此IMG包未进行Crack,资源来源于网络,如果你下载的是Crack版,与原作者无关,请自行分辨.“就看人 ...

  10. RocketMQ的部署方式及持久化方式

    RocketMQ 的 Broker 有三种集群部署方式: 1. 单台 Master 部署: 2. 多台 Master部署: 3. 多 Master 多 Slave 部署:采用第 3 种部署方式时, M ...