题解

只会蠢蠢的\(n^3\)……菜啊……

我们发现最右的端点一定会选,看到的点一定是当前能看到的斜率最小的点变得更小一点,记录下这个点,在我们遇到一个看不到的点的时候,然后只用考虑R到它斜率最小的这个点,是被R看到,不放守卫,还是这个点放一个守卫

也就是\(min(f[l][t] + f[t + 1][r],f[l][t - 1] + f[t][r])\)为什么是对的呢,如果我们枚举的中间点在别的位置,这个位置一定能被R看到,视线还会被R看到的斜率最小的这个点挡住,所以是没有必要枚举的

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
//#define ivorysi
#define pb push_back
#define eps 1e-12
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define fi first
#define se second
#define mo 974711
#define MAXN 5005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) putchar('-'),x = -x;
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct Point {
int64 x,y;
Point(){};
Point(int64 _x,int64 _y) {
x = _x;y = _y;
}
friend int64 operator * (const Point &a,const Point &b) {
return a.x * b.y - a.y * b.x;
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x - b.x,a.y - b.y);
}
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x + b.x,a.y + b.y);
}
}P[MAXN];
int N;
bool vis[MAXN][MAXN];
int f[MAXN][MAXN],ans;
void Solve() {
read(N);int64 h;
for(int i = 1 ; i <= N ; ++i) {
read(h);P[i] = Point(i,h);
}
memset(f,0x3f3f3f3f,sizeof(f));
f[1][1] = 1;ans ^= 1;
for(int r = 2 ; r <= N ; ++r) {
Point T = Point(r,0);int t = r;
f[r][r] = 1;ans ^= 1;
for(int l = r - 1; l >= 1 ; --l) {
if((T - P[r]) * (P[l] - P[r]) < 0) {
T = P[l];t = l;
f[l][r] = f[l + 1][r];
}
else {
f[l][r] = min(f[l][t - 1] + f[t][r],f[l][t] + f[t + 1][r]);
}
ans ^= f[l][r];
}
}
printf("%d\n",ans);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【LOJ】 #2545. 「JXOI2018」守卫的更多相关文章

  1. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  2. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  3. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  4. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  5. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  6. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  7. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

  8. Loj #3055. 「HNOI2019」JOJO

    Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...

  9. Loj 3058. 「HNOI2019」白兔之舞

    Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...

随机推荐

  1. Hadoop生态圈-使用phoenix的API进行JDBC编程

    Hadoop生态圈-使用phoenix的API进行JDBC编程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  2. java.lang.NoClassDefFoundError: org/hibernate/service/ServiceRegistry] 类似问题

    使用Hibernate时出现以上错误,在Java Project中运行无误,但是来到Dynamic Web Project中却出现了如下错误: hibernate 报错:java.lang.NoCla ...

  3. CF&&CC百套计划2 CodeChef December Challenge 2017 Chef and Hamming Distance of arrays

    https://www.codechef.com/DEC17/problems/CHEFHAM #include<cstdio> #include<cstring> #incl ...

  4. Matlab debug

    输入彩色,imwrite保存黑白图片,imwrite的维度错误. 程序如下,正常图像,少了一个维度imwrite,把图片展开,是一个二维的灰色图像(R=G=B),.如果限定了第二维,也是一个灰色图像. ...

  5. presto架构和原理

    Presto 是 Facebook 推出的一个基于Java开发的大数据分布式 SQL 查询引擎,可对从数 G 到数 P 的大数据进行交互式的查询,查询的速度达到商业数据仓库的级别,据称该引擎的性能是 ...

  6. Java并发编程原理与实战四十二:锁与volatile的内存语义

    锁与volatile的内存语义 1.锁的内存语义 2.volatile内存语义 3.synchronized内存语义 4.Lock与synchronized的区别 5.ReentrantLock源码实 ...

  7. 视差插件parallarx

    github上的demo,自己拿来改了改. <!DOCTYPE html> <html> <head> <meta charset="UTF-8&q ...

  8. IE6 下 DD_belatedPNG 引发的血案

    群里一朋友Q我,说遇到兼容性问题了,我说为何不用jQuery呢(因为他们公司要求尽量js写).他说用了,还是有问题,IE6下不行,其他都行.然后他发我代码,我一开始真以为是兼容性问题,比如数组对象最后 ...

  9. AngularJS - 下一个大框架

    AngularJS AngularJS是web应用的下一个巨头. AngularJS如果为创建web应用而设计,那它就是HTML的套路了.具有数据绑定, MVW, MVVM, MVC, 依赖注入的声明 ...

  10. 连接mysql提示Establishing SSL connection without server's identity verification is not recommended错误

    Establishing SSL connection without server's identity verification is not recommended. According to ...