【LOJ】 #2545. 「JXOI2018」守卫
题解
只会蠢蠢的\(n^3\)……菜啊……
我们发现最右的端点一定会选,看到的点一定是当前能看到的斜率最小的点变得更小一点,记录下这个点,在我们遇到一个看不到的点的时候,然后只用考虑R到它斜率最小的这个点,是被R看到,不放守卫,还是这个点放一个守卫
也就是\(min(f[l][t] + f[t + 1][r],f[l][t - 1] + f[t][r])\)为什么是对的呢,如果我们枚举的中间点在别的位置,这个位置一定能被R看到,视线还会被R看到的斜率最小的这个点挡住,所以是没有必要枚举的
代码
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
//#define ivorysi
#define pb push_back
#define eps 1e-12
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define fi first
#define se second
#define mo 974711
#define MAXN 5005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) putchar('-'),x = -x;
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct Point {
int64 x,y;
Point(){};
Point(int64 _x,int64 _y) {
x = _x;y = _y;
}
friend int64 operator * (const Point &a,const Point &b) {
return a.x * b.y - a.y * b.x;
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x - b.x,a.y - b.y);
}
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x + b.x,a.y + b.y);
}
}P[MAXN];
int N;
bool vis[MAXN][MAXN];
int f[MAXN][MAXN],ans;
void Solve() {
read(N);int64 h;
for(int i = 1 ; i <= N ; ++i) {
read(h);P[i] = Point(i,h);
}
memset(f,0x3f3f3f3f,sizeof(f));
f[1][1] = 1;ans ^= 1;
for(int r = 2 ; r <= N ; ++r) {
Point T = Point(r,0);int t = r;
f[r][r] = 1;ans ^= 1;
for(int l = r - 1; l >= 1 ; --l) {
if((T - P[r]) * (P[l] - P[r]) < 0) {
T = P[l];t = l;
f[l][r] = f[l + 1][r];
}
else {
f[l][r] = min(f[l][t - 1] + f[t][r],f[l][t] + f[t + 1][r]);
}
ans ^= f[l][r];
}
}
printf("%d\n",ans);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
【LOJ】 #2545. 「JXOI2018」守卫的更多相关文章
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
随机推荐
- Hadoop生态圈-使用phoenix的API进行JDBC编程
Hadoop生态圈-使用phoenix的API进行JDBC编程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- java.lang.NoClassDefFoundError: org/hibernate/service/ServiceRegistry] 类似问题
使用Hibernate时出现以上错误,在Java Project中运行无误,但是来到Dynamic Web Project中却出现了如下错误: hibernate 报错:java.lang.NoCla ...
- CF&&CC百套计划2 CodeChef December Challenge 2017 Chef and Hamming Distance of arrays
https://www.codechef.com/DEC17/problems/CHEFHAM #include<cstdio> #include<cstring> #incl ...
- Matlab debug
输入彩色,imwrite保存黑白图片,imwrite的维度错误. 程序如下,正常图像,少了一个维度imwrite,把图片展开,是一个二维的灰色图像(R=G=B),.如果限定了第二维,也是一个灰色图像. ...
- presto架构和原理
Presto 是 Facebook 推出的一个基于Java开发的大数据分布式 SQL 查询引擎,可对从数 G 到数 P 的大数据进行交互式的查询,查询的速度达到商业数据仓库的级别,据称该引擎的性能是 ...
- Java并发编程原理与实战四十二:锁与volatile的内存语义
锁与volatile的内存语义 1.锁的内存语义 2.volatile内存语义 3.synchronized内存语义 4.Lock与synchronized的区别 5.ReentrantLock源码实 ...
- 视差插件parallarx
github上的demo,自己拿来改了改. <!DOCTYPE html> <html> <head> <meta charset="UTF-8&q ...
- IE6 下 DD_belatedPNG 引发的血案
群里一朋友Q我,说遇到兼容性问题了,我说为何不用jQuery呢(因为他们公司要求尽量js写).他说用了,还是有问题,IE6下不行,其他都行.然后他发我代码,我一开始真以为是兼容性问题,比如数组对象最后 ...
- AngularJS - 下一个大框架
AngularJS AngularJS是web应用的下一个巨头. AngularJS如果为创建web应用而设计,那它就是HTML的套路了.具有数据绑定, MVW, MVVM, MVC, 依赖注入的声明 ...
- 连接mysql提示Establishing SSL connection without server's identity verification is not recommended错误
Establishing SSL connection without server's identity verification is not recommended. According to ...