Probability Concepts
Probability Concepts
Unconditional probability and Conditional Probability
- Unconditional Probability (a.k.a. marginal probability): refer to the probability off an event regardless of the past or future occurrence of other events.
- Conditional Probability: refer to one where the occurrence of one event affects the probability of the occurrence of another event.
Probability Rules
- P(AB) = P(A|B)*P(B)
- P(A or B) = P(A) + P(B) - P(AB)
- P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) (B1..Bn) is a mutually exclusive and exhaustive set of outcomes.
Expected Value
The expected value is the weighted average of the possible outcomes of a random variable, where the weights are the probabilities that the outcomes will occur.
The degree of disperation of outcomes around the expected value off a random variable is measured using the variance and standard deviation. When pairs of random variables are being observed, the covariance and correlation are used to measure the extent of the relationship between the observed values for the two variables from one observation to the next.
Variance
The variance is calculated as the probability-weighted sum of the squared differences between each possible outcome and expected value.
Var(R)=E([R-E(R)]^2) = w1(R1-E1)^2 + w2(R2-E2)^2 + ... + wn(Rn-En)^2
Note: 普通统计中的方差是平方和直接除以N,这里面假设每个值出现的概率(权重)是一样的,所以除以N就可以了。而且平方和中是每个值减去平均值,而不是期望。同样是就假设每个值的权重是一样的。
Covariance and Correlation
The variance and standard deviation measure the disperation, or valatility, of only one variable. In many finance situations, however, we are interested in how two random variables move in relation to each other.
Covariance is a measure of how two assets move together. It is the expected value of the product of the deviations of two random variables from their respective expected values.
Cov(Ri,Rj) = E{[Ri-E(Ri)][Rj-E(Rj)]}
Note 1: The variance measures how a random variable moves with itself, and the covariance measures how one random variable move with another random variable.
Note 2: The covariance may range from negative infinity to positive infinity
Correlation Coefficient, or simply, correlation is calculate by the covariance of two random variables divided by the product of the random variable's standard deviations.
Corr(Ri, Rj)=Cov(Ri, Rj)/[σ(Ri)σ(Rj)]
Note 1: Correlation measures the strength of the linear relationship between two random variables.
Note 2: Correlation has no units.
Note 3: The correlation ranges from -1 to 1.
Note 4: If Corr(Ri, Rj)=1.0, the random variables have perfect positive correlation.
Note 5: If Corr(Ri, Rj)=-1.0, the random variables have perfect negative correlation.
Note 5: If Corr(Ri, Rj)=0, there is no linear relationship between the variables, indicating that prediction of Ri cannot be made on the basis of Rj using linear method.
Portfolio expected value and Portfolio variance
*Portfolio expected value
*Portfolio variance
Note: specially for two assets, the portfolio variance is calculated:
Bayers' formula
Bayers' formula is used to update a given set of prior probabilities for a given event in response to the arrival of new new information.
Factorial, combination, and permutation
阶乘,组合 和排列
Probability Concepts的更多相关文章
- QM4_Probability
Basic Concepts Probability concepts Terms Random variable A quantity whose possible values are uncer ...
- [Algorithm] 如何正确撸<算法导论>CLRS
其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话 ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- 最大似然估计(MLE)与最大后验概率(MAP)
何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数. 最大似然估计 ...
- 某Facebook工程师写的攻略。
Chapter 1 Interesting read, but you can skip it. Chapter 2 2.1 Insertion Sort - To be honest you sho ...
- (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...
- Deep Learning in a Nutshell: Core Concepts
Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Pa ...
- (转) Deep Learning in a Nutshell: Core Concepts
Deep Learning in a Nutshell: Core Concepts Share: Posted on November 3, 2015by Tim Dettmers 7 Comm ...
- An Introduction to Measure Theory and Probability
目录 Chapter 1 Measure spaces Chapter 2 Integration Chapter 3 Spaces of integrable functions Chapter 4 ...
随机推荐
- JS 提交form表单
源码实例一:javascript 页面加裁时自动提交表单Form表单:<form method="post" id="myform" action=&qu ...
- android中的数据库操作(SQLite)
android中的数据库操作 android中的应用开发很难避免不去使用数据库,这次就和大家聊聊android中的数据库操作. 一.android内的数据库的基础知识介绍 1.用了什么数据库 an ...
- 微信小程序 - 实现购物车结算
示例源码下载:小程序-实现购物车结算
- ADS中编译现存项目时常见错误:无法打开文件\…\…\2440init.o的解决办法
错误提示如下: 解决方法: 重新编译即可.
- C语言变量的声明位置
标准C里面必须放在代码前面,否则出错: C++里面不一定要放在最前面,用的时候声明也不迟: 所以要看具体的编译环境,如果是C的话必须放在最前,C++就不用:一般.c后缀的是C文件,按C来编译:.cpp ...
- poj 1879 Truck History
本题链接:点击打开链接 题目大意: 输入n表示卡车辆数,输入每辆卡车编号.即长度为7的字符串,每辆卡车编号均可由其他类型编号衍生过来,求由当中一辆衍生出其他全部的最小衍生次数(有一个字符不同就需衍生一 ...
- cocos2d 重写顶点着色语言
bool CCShaderSprite::initWithFile( const char *pszFilename ) { bool ret=false; do { ret=CCSpri ...
- poj 4014 Dice 贪心
//poj 4014 //sep9 #include <iostream> #include <algorithm> using namespace std; int n; s ...
- servlet 多线程
servlet在服务器中只有一个实例,那么它响应请求的方式应该是多线程. 一,servlet容器如何同时处理多个请求. Servlet采用多线程来处理多个请求同时访问,Servelet容器维护了一个线 ...
- pythong 中的 __call__
python __call__ (可调用对象) __call__ Python中有一个有趣的语法,只要定义类型的时候,实现__call__函数,这个类型就成为可调用的. 换句话说,我们可以把这个类型的 ...