Probability Concepts
Probability Concepts
Unconditional probability and Conditional Probability
- Unconditional Probability (a.k.a. marginal probability): refer to the probability off an event regardless of the past or future occurrence of other events.
- Conditional Probability: refer to one where the occurrence of one event affects the probability of the occurrence of another event.
Probability Rules
- P(AB) = P(A|B)*P(B)
- P(A or B) = P(A) + P(B) - P(AB)
- P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) (B1..Bn) is a mutually exclusive and exhaustive set of outcomes.
Expected Value
The expected value is the weighted average of the possible outcomes of a random variable, where the weights are the probabilities that the outcomes will occur.
The degree of disperation of outcomes around the expected value off a random variable is measured using the variance and standard deviation. When pairs of random variables are being observed, the covariance and correlation are used to measure the extent of the relationship between the observed values for the two variables from one observation to the next.
Variance
The variance is calculated as the probability-weighted sum of the squared differences between each possible outcome and expected value.
Var(R)=E([R-E(R)]^2) = w1(R1-E1)^2 + w2(R2-E2)^2 + ... + wn(Rn-En)^2
Note: 普通统计中的方差是平方和直接除以N,这里面假设每个值出现的概率(权重)是一样的,所以除以N就可以了。而且平方和中是每个值减去平均值,而不是期望。同样是就假设每个值的权重是一样的。
Covariance and Correlation
The variance and standard deviation measure the disperation, or valatility, of only one variable. In many finance situations, however, we are interested in how two random variables move in relation to each other.
Covariance is a measure of how two assets move together. It is the expected value of the product of the deviations of two random variables from their respective expected values.
Cov(Ri,Rj) = E{[Ri-E(Ri)][Rj-E(Rj)]}
Note 1: The variance measures how a random variable moves with itself, and the covariance measures how one random variable move with another random variable.
Note 2: The covariance may range from negative infinity to positive infinity
Correlation Coefficient, or simply, correlation is calculate by the covariance of two random variables divided by the product of the random variable's standard deviations.
Corr(Ri, Rj)=Cov(Ri, Rj)/[σ(Ri)σ(Rj)]
Note 1: Correlation measures the strength of the linear relationship between two random variables.
Note 2: Correlation has no units.
Note 3: The correlation ranges from -1 to 1.
Note 4: If Corr(Ri, Rj)=1.0, the random variables have perfect positive correlation.
Note 5: If Corr(Ri, Rj)=-1.0, the random variables have perfect negative correlation.
Note 5: If Corr(Ri, Rj)=0, there is no linear relationship between the variables, indicating that prediction of Ri cannot be made on the basis of Rj using linear method.
Portfolio expected value and Portfolio variance
*Portfolio expected value
*Portfolio variance
Note: specially for two assets, the portfolio variance is calculated:
Bayers' formula
Bayers' formula is used to update a given set of prior probabilities for a given event in response to the arrival of new new information.
Factorial, combination, and permutation
阶乘,组合 和排列
Probability Concepts的更多相关文章
- QM4_Probability
Basic Concepts Probability concepts Terms Random variable A quantity whose possible values are uncer ...
- [Algorithm] 如何正确撸<算法导论>CLRS
其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话 ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- 最大似然估计(MLE)与最大后验概率(MAP)
何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数. 最大似然估计 ...
- 某Facebook工程师写的攻略。
Chapter 1 Interesting read, but you can skip it. Chapter 2 2.1 Insertion Sort - To be honest you sho ...
- (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...
- Deep Learning in a Nutshell: Core Concepts
Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Pa ...
- (转) Deep Learning in a Nutshell: Core Concepts
Deep Learning in a Nutshell: Core Concepts Share: Posted on November 3, 2015by Tim Dettmers 7 Comm ...
- An Introduction to Measure Theory and Probability
目录 Chapter 1 Measure spaces Chapter 2 Integration Chapter 3 Spaces of integrable functions Chapter 4 ...
随机推荐
- 翻译记忆软件-塔多思TRADO经典教程_3
一.创建思迪术语库 1."开始>程序"中打开程序的主界面 2.按窗口内的"术语库"图标,或者"术语库"菜单"维护一个术语库数 ...
- 关于SQL 行转列的办法
公司实施小姑娘要我写一个SQL给她 需求如下: 现在有表A,字段 id code parentid backres,现数据如下 id code parentid backres 1 A 5 2 B 5 ...
- ZH奶酪:putty远程登录Linux服务器非常慢
11.pytty远程登录Linux服务器非常慢 http://www.it165.net/os/html/201209/3425.html 12.启动SSHD服务报错 http://blog.chin ...
- Appium Python 五:元素定位
总结 单个元素定位: driver.find_element_by_accessibility_id(id) driver.find_element_by_android_uiautomator(ui ...
- ubuntu apache2 虚拟主机服务
ubuntu apache2 虚拟主机服务 本次配置的是一个 ip 对应多个 虚拟主机 1:先检查 ubuntu server 是否已经安装了 apache2 web服务: apache2 -v 看到 ...
- vscode - 设置中文语言
记得上次安装的时候,自动提示安装本地语言包,现在的版本貌似不会了吧. 1.先安装扩展,按键CTRL+SHIFT+P 输入 ext install ,最后输入:language,大概就可以找到简体中文包 ...
- Log4net的配置-按照日期+文件大小混合分割
ender name="DebugAppender" type="log4net.Appender.RollingFileAppender"><fi ...
- VNC-tigervnc-server远程调用图形化
远程调用Linux图形化,很不错的.. 01.远程Linux须装图形化 yum groupinstall -y 'Desktop' 'X Window System' #xclock试图形 ...
- linux利器expect的使用
1.什么是expect在做系统管理时,我们很多时候需要输入密码,例如:连接 ssh,连接ftp,那么如何能做到不输入密码,我们需要有一个工具,能代替我们实现与终端的交互,它能够代替我们实现与终端的交互 ...
- 更安全的HTTPS
iOS9把所有的http请求都改为https了:iOS9系统发送的网络请求将统一使用TLS 1.2 SSL.采用TLS 1.2 协议,目的是 强制增强数据访问安全,而且 系统 Foundation 框 ...