A zero-indexed array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:

  • A[P] + A[Q] > A[R],
  • A[Q] + A[R] > A[P],
  • A[R] + A[P] > A[Q].

For example, consider array A such that:

  A[0] = 10    A[1] = 2    A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 12

There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).

Write a function:

int solution(vector<int> &A);

that, given a zero-indexed array A consisting of N integers, returns the number of triangular triplets in this array.

For example, given array A such that:

  A[0] = 10    A[1] = 2    A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 12

the function should return 4, as explained above.

Assume that:

  • N is an integer within the range [0..1,000];
  • each element of array A is an integer within the range [1..1,000,000,000].

Complexity:

  • expected worst-case time complexity is O(N2);
  • expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).

给定正整数数组A,长度为N,下标从0开始,求(P,Q,R),满足0<=P<Q<R<N 并且 A[P] + A[Q] > A[R], A[Q] + A[R] > A[P], A[P] + A[R] > A[Q]的三元组个数。

数据范围 N [0..1000], 数组元素[1..10^9]。

要求复杂度 时间O(N ^ 2) ,空间 O(1)。

分析: 显然我们不能枚举……我们可以把数组排序 O(NlogN),甚至O(N^2)的排序都可以。然后还是枚举,只不过枚举两条较小的边A[x] , A[y], 然后我们考虑最大边A[z],设想假设我们固定x, 当y变大时A[x] + A[y]也变大,我们需要A[x] + A[y] > A[z], y变大之前的那些z值现在依然也满足条件,所以我们只要接着上次满足条件的最大的z,继续循环就可以了。所以对于同一个x来说,y和z的变化都是O(N)的。总复杂度O(N^2)。

 // you can use includes, for example:
#include <algorithm> // you can write to stdout for debugging purposes, e.g.
// cout << "this is a debug message" << endl; int solution(vector<int> &A) {
// write your code in C++11
sort(A.begin(), A.end());
int a, b, c;
int res = ;
for (a = ; a < (int)A.size() - ; ++a) {
c = a + ;
for (b = a + ; b < (int)A.size() - ; ++b) {
for (c = max(c, b + ); c < A.size() && A[a] + A[b] > A[c]; ++c);
res += c - b - ;
}
}
return res;
}

[Codility] CountTriangles的更多相关文章

  1. Codility NumberSolitaire Solution

    1.题目: A game for one player is played on a board consisting of N consecutive squares, numbered from ...

  2. codility flags solution

    How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...

  3. GenomicRangeQuery /codility/ preFix sums

    首先上题目: A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which ...

  4. *[codility]Peaks

    https://codility.com/demo/take-sample-test/peaks http://blog.csdn.net/caopengcs/article/details/1749 ...

  5. *[codility]Country network

    https://codility.com/programmers/challenges/fluorum2014 http://www.51nod.com/onlineJudge/questionCod ...

  6. *[codility]AscendingPaths

    https://codility.com/programmers/challenges/magnesium2014 图形上的DP,先按照路径长度排序,然后依次遍历,状态是使用到当前路径为止的情况:每个 ...

  7. *[codility]MaxDoubleSliceSum

    https://codility.com/demo/take-sample-test/max_double_slice_sum 两个最大子段和相拼接,从前和从后都扫一遍.注意其中一段可以为0.还有最后 ...

  8. *[codility]Fish

    https://codility.com/demo/take-sample-test/fish 一开始习惯性使用单调栈,后来发现一个普通栈就可以了. #include <stack> us ...

  9. *[codility]CartesianSequence

    https://codility.com/programmers/challenges/upsilon2012 求笛卡尔树的高度,可以用单调栈来做. 维持一个单调递减的栈,每次进栈的时候记录下它之后有 ...

随机推荐

  1. [Javascirpt] Immediately-Invoked function!!! IMPORTANT

    var parkRides = [["Birch Bumpers", 40], ["Pines Plunge", 55], ["Cedar Coast ...

  2. SICP-练习2.17

    [问题] 请定义出过程last-pair.它返回仅仅包括给定(非空)表里最后一个元素的表: (last-pair (list 23 72 149 34)) (34) [分析] last-pair须要处 ...

  3. [android错误] Failed to install *.apk on device 'emulator-5554': timeout

    [2014-06-26 15:35:42 - app] ------------------------------ [2014-06-26 15:35:42 - app] Android Launc ...

  4. com.esotericsoftware.kryo.kryoexception java.util.ConcurentModificationException

    近期 有网友看我的"整合Kafka到Spark Streaming--代码演示样例和挑战"文章, 讲 kafka对象 放到 pool 并通过broadcast广播出去: 然后 在开 ...

  5. java编程思想 第四版 第六章 个人练习

    欢迎加群:239063848 进群须知:本群仅用于技术分享与交流.问题公布与解答 禁止闲聊.非诚勿扰 练习1:(1)在某个包中创建一个类,在这个类所处的包的外部创建该类的一个实例. import mi ...

  6. 子查询四(在select子句中使用子查询)

    示例一.查询出每个部门的编号,名称,位置,部门人数,平均工资 SELECT d.deptno,d.dname,d.loc, (SELECT COUNT(empno) FROM emp WHERE em ...

  7. Oracle体系结构一(学习笔记)

    总体结构分为三个部分:SGA,PGA,FILE文件 按功能分: 存储结构  存储结构对应关系  主要文件: 数据文件: 每个数据文件只与一个数据库相关联 一个表空间可以包含一个或者多个数据文件 一个数 ...

  8. 解决 /dev/mapper/* 100%

    1.查看大文件位置du -sh /* | sort -nr 2.分析,处理文件

  9. CF MVC3此操作要求连接到 'master' 数据库。无法创建与 'master' 数据库之间的连接,这是因为已打开原始数据库连接,并且已从连接字符串中删除凭据。请提供未打开的连接 解决方法

    <add name="ProwebEntities" connectionString ="Data Source=.;Integrated Security=tr ...

  10. 用srvctl命令配置service

    .用srvctl命令配置service 除了用DBCA图形方式,还能够使用命令方式配置service,这样的方法对于维护远程尤事实上用.不管是创建还是维护都是用一个命令srvctl,先看一下srvct ...