题面

题解

xgzc怒切计算几何

最小圆覆盖板子题

整体算法如下:

枚举第一个点,考虑当前圆是否包含了这个点,如果没有,则把圆变成以这个点为圆心,半径为\(0\)的圆。再枚举第二个点,考虑圆是否包含了这个点,如果没有,则把圆变成以这两个点的中点为圆心,半径为两点距离一半的圆。再枚举第三个点,节点是否在圆内,如果不在,则把圆直接变成这三个点的外接圆。

\(n^3\)过百万???是的

我们随机打乱点,这样的期望是\(O(n)\)的

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define clear(x, y) memset(x, y, sizeof(x)) inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(1e6 + 10);
const double eps(1e-10), pi(acos(-1));
struct point { double x, y; };
struct line { point a, v; };
struct circle { point o; double r; } O;
typedef point vector;
inline vector operator + (const vector &lhs, const vector &rhs)
{ return (vector) {lhs.x + rhs.x, lhs.y + rhs.y}; }
inline vector operator - (const vector &lhs, const vector &rhs)
{ return (vector) {lhs.x - rhs.x, lhs.y - rhs.y}; }
inline vector operator * (const vector &lhs, const double &rhs)
{ return (vector) {lhs.x * rhs, lhs.y * rhs}; }
inline vector operator / (const vector &lhs, const double &rhs)
{ return (vector) {lhs.x / rhs, lhs.y / rhs}; }
inline double operator * (const vector &lhs, const vector &rhs)
{ return lhs.x * rhs.x + lhs.y * rhs.y; }
inline double cross(const vector &lhs, const vector &rhs)
{ return lhs.x * rhs.y - lhs.y * rhs.x; }
inline double Len(const vector &a) { return sqrt(a.x * a.x + a.y * a.y); }
inline double Dis(const point &a, const point &b) { return Len(a - b); }
inline vector rotate(const vector &lhs, const double &ang)
{
double c = cos(ang), s = sin(ang);
return (vector) {lhs.x * c - lhs.y * s, lhs.x * s + lhs.y * c};
} point Intersection(const line &a, const line &b)
{
vector c = b.a - a.a;
double t = cross(b.v, c) / cross(b.v, a.v);
return a.a + a.v * t;
} line half(const line &a)
{
point b = a.a + a.v * .5;
return (line) {b, rotate(a.v, pi * .5)};
} void getCircle(point p[], int n)
{
std::random_shuffle(p + 1, p + n + 1);
for(RG int i = 1; i <= n; ++i)
if(Dis(O.o, p[i]) > O.r)
{
O.o = p[i], O.r = 0;
for(RG int j = 1; j < i; j++)
if(Dis(O.o, p[j]) > O.r)
{
O.o = (p[i] + p[j]) * .5, O.r = Dis(p[i], p[j]) * .5;
for(RG int k = 1; k < j; k++)
if(Dis(O.o, p[k]) > O.r)
O.o = Intersection(half((line) {p[i], p[j] - p[i]}),
half((line) {p[i], p[k] - p[i]})),
O.r = Dis(O.o, p[i]);
}
}
printf("%.2lf %.2lf %.2lf\n", O.o.x, O.o.y, O.r);
} int n; point p[maxn];
int main()
{
srand(time(NULL)); scanf("%d", &n);
for(RG int i = 1; i <= n; i++) scanf("%lf%lf", &p[i].x, &p[i].y);
getCircle(p, n);
return 0;
}

【AHOI2012】信号塔的更多相关文章

  1. bzoj2823[AHOI2012]信号塔

    2823: [AHOI2012]信号塔 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1190  Solved: 545[Submit][Status ...

  2. 【BZOJ2823】[AHOI2012]信号塔(最小圆覆盖)

    [BZOJ2823][AHOI2012]信号塔(最小圆覆盖) 题面 BZOJ 洛谷 相同的题: BZOJ1 BZOJ2 洛谷 题解 模板题... #include<iostream> #i ...

  3. 2018.07.04 BZOJ 2823: AHOI2012信号塔(最小圆覆盖)

    2823: [AHOI2012]信号塔 Time Limit: 10 Sec Memory Limit: 128 MB Description 在野外训练中,为了确保每位参加集训的成员安全,实时的掌握 ...

  4. 【BZOJ】2823: [AHOI2012]信号塔

    题意 给\(n\)个点,求一个能覆盖所有点的面积最小的圆.(\(n \le 50000\)) 分析 随机增量法 题解 理论上\(O(n^3)\)暴力,实际上加上随机化后期望是\(O(n)\)的. 算法 ...

  5. 【bzoj2823】 AHOI2012—信号塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2823 (题目链接) 题意 求最小圆覆盖 Solution 关于最小圆覆盖的做法,论文里面都有.其实真 ...

  6. BZOJ 2823: [AHOI2012]信号塔

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2823 随机增量法.不断加点维护圆,主要是三点共圆那里打得烦(其实也就是个两中垂线求交点+联立方 ...

  7. BZOJ.2823.[AHOI2012]信号塔(最小圆覆盖 随机增量法)

    BZOJ 洛谷 一个经典的随机增量法,具体可以看这里,只记一下大体流程. 一个定理:如果一个点\(p\)不在点集\(S\)的最小覆盖圆内,那么它一定在\(S\bigcup p\)的最小覆盖圆上. 所以 ...

  8. AHOI2012 信号塔 | 最小圆覆盖模板

    题目链接:戳我 最小圆覆盖. 1.枚举第一个点,考虑当前圆是否包含了这个点,如果没有,则把圆变成以这个点为圆心,半径为0的圆. 2.枚举第二个点,考虑圆是否包含了这个点,如果没有,则把圆变成以这两个点 ...

  9. BZOJ2823 [AHOI2012]信号塔 【最小圆覆盖】

    题目链接 BZOJ2823 题解 最小圆覆盖模板 都懒得再写一次 #include<iostream> #include<cstdio> #include<cmath&g ...

  10. bzoj 2823: [AHOI2012]信号塔 最小圆覆盖

    题目大意: 给定n个点,求面积最小的园覆盖所有点.其中\(n \leq 10^6\) 题解: 恩... 刚拿到这道题的时候... 什么???最小圆覆盖不是\(O(n^3)\)的随机增量算法吗????? ...

随机推荐

  1. 用以替换系统NSLog的YouXianMingLog

    用以替换系统NSLog的YouXianMingLog 这是本人自己使用并改良的用以替换系统NSLog的类,非常好用,以下是使用示例,现在开源出来并提供源码,好用的话顶一下吧^_^ 效果: YouXia ...

  2. Redis学习---CentOs/RedHat下Redis的安装

    redis是C语言开发,建议在linux上运行,本教程使用Centos6.4作为安装环境.      安装redis需要先将官网下载的源码进行编译,编译依赖gcc环境,如果没有gcc环境,需要安装gc ...

  3. Linux which/whereis/locate命令详解

    which 查看可执行文件的位置,从全局环境变量PATH里面查找对应的路径,默认是找 bash内所规范的目录 whereis 查看文件的位置,配合参数-b,用于程序名的搜索,从linux数据库查找. ...

  4. centos7.4之zabbix4.0的fping监控

    参考博文: https://www.cnblogs.com/lei0213/p/8859326.html 注释:他是额外安装fping的:因为我yum安装的zabbix,fping就已经自带了:安装步 ...

  5. Hadoop HBase概念学习系列之hbase shell中执行java方法(高手必备)(二十五)

    hbase shell中执行java方法(高手必备),务必掌握! 1. 2. 3. 4. 更多命令,见scan help.在实际工作中,多用这个!!! API参考: http://hbase.apac ...

  6. jQuery: 刨根问底 attr and prop两个函数的区别

    In this short post I will explain the difference between attributes and properties in HTML. The .pro ...

  7. September 29th 2017 Week 39th Friday

    Human life is ephemera, which makes it precious. 生命短暂,所以珍贵. Don't waste time on praying to the God. ...

  8. JdkDynamicAopProxy-笔记

    这个接口的继承体系图: 一.AopProxy InvocationHandler就不说了,看看AopProxy的源码. /** * Delegate interface for a configure ...

  9. 学习python第三天数据库day2

    day01回顾: 数据库: 定义:存储数据的仓库(database,简称db) 常用的数据库对象有哪些? 1).数据表(table) ***** 2).视图(view) 3).索引(index) 4) ...

  10. C++编译器符号表有哪些内容?

    http://blog.csdn.net/wangbingcsu/article/details/48340479 C++编译器符号表有哪些内容? 很早就想写一篇关于符号表的学习小结,可是迟迟不能下笔 ...