BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数
题目连接:
http://www.lydsy.com/JudgeOnline/problem.php?id=4408
Description
一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。
Input
第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。
Output
对于每个询问,输出一行对应的答案。
Sample Input
5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5
Sample Output
2
4
8
8
8
Hint
题意
题解:
权限题
用持久化线段树去维护就好了
假设我当前的答案是ans,那么如果在这个区间小于等于ans的数的和sum小于了ans,那么显然是不能构成ans的,那就直接输出就好了
否则就更新ans=sum+1,然后这样不停的迭代下去就好了。
这个解释的话,用dp去想就好了
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct node
{
int l,r,sum;
}T[maxn*100];
int n,cnt,a[maxn],root[maxn],m,l,r,ans,tot;
void update(int l,int r,int &x,int y,int val)
{
T[++cnt]=T[y],T[cnt].sum+=val;x=cnt;
if(l==r)return;
int mid=(l+r)/2;
if(val<=mid)update(l,mid,T[x].l,T[x].l,val);
else update(mid+1,r,T[x].r,T[x].r,val);
}
int query(int l,int r,int x,int y,int pos)
{
if(l==r)return T[y].sum-T[x].sum;
int mid=(l+r)/2;
if(pos<=mid)return query(l,mid,T[x].l,T[y].l,pos);
else return query(mid+1,r,T[x].r,T[y].r,pos)+T[T[y].l].sum-T[T[x].l].sum;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)a[i]=read(),tot+=a[i];
for(int i=1;i<=n;i++)update(1,tot,root[i],root[i-1],a[i]);
for(m=read();m;m--)
{
l=read(),r=read(),ans=1;
while(1)
{
int tmp=query(1,tot,root[l-1],root[r],ans);
if(tmp<ans)break;
ans=tmp+1;
}
printf("%d\n",ans);
}
}
BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树的更多相关文章
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
- BZOJ 4408: [Fjoi 2016]神秘数
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 464 Solved: 281[Submit][Status ...
- bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...
- ●BZOJ 4408 [Fjoi 2016]神秘数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 题解: 主席树 首先,对于一些数来说, 如果可以我们可以使得其中的某些数能够拼出 1- ...
- BZOJ 4408: [Fjoi 2016]神秘数 [主席树]
传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...
- BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题
Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...
- 4408: [Fjoi 2016]神秘数
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 452 Solved: 273 [Submit][Stat ...
- 【BZOJ-4408】神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 475 Solved: 287[Submit][Status ...
- (bzoj4408)[FJOI2016]神秘数(可持久化线段树)
(bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...
随机推荐
- Framebuffer 驱动学习总结(二)---- Framebuffer模块初始化
---恢复内容开始--- Framebuffer模块初始化过程:--driver\video\fbmem.c 1. 初始化Framebuffer: FrameBuffer驱动是以模块的形式注册到系统 ...
- aarch64_n1
NFStest-2.1.5-0.fc26.noarch.rpm 2017-02-17 01:19 531K fedora Mirroring Project NLopt-2.4.2-11.fc26.a ...
- 双机/RAC/Dataguard的区别【转】
本文转自 双机/RAC/Dataguard的区别-jasoname-ITPUB博客 http://blog.itpub.net/22741583/viewspace-684261/ Data Guar ...
- 分布式git
分布式 Git 你现在拥有了一个远程 Git 版本库,能为所有开发者共享代码提供服务,在一个本地工作流程下,你也已经熟悉 了基本 Git 命令.你现在可以学习如何利用 Git 提供的一些分布式工作流程 ...
- Python基础:内置类型(未完待续)
本文根据Python 3.6.5的官文Built-in Types而写. 目录 1.真值测试 2.布尔操作 -- and, or, not 3.比较 4.数字型 -- int, float, comp ...
- MySQL权限操作:Grant、Revoke
数据库操作: 创建数据库.创建表——CREATE 删除数据库.删除表——DROP 删除表内容——TRUNCATE.DELETE(后者效率低.一行一行地删除记录) 查询数据库.查询表——SELECT 插 ...
- No.11 selenium学习之路之浏览器大小
通过set_window_size()方法可以设置打开的浏览器大小 maximize_window()方法可以把当前浏览器最大化 例子:
- java 闭包与回调
闭包(closure)是一个可调用的对象,它记录了一些信息,这些信息来自于创建它的作用域. 内部类是面向对象的闭包,因为它不仅包含外围类对象(创建内部类的作用域)的信息,还自动拥有一个指向此外围类对象 ...
- 10 个优质的 Laravel 扩展推荐
这里有 10+ 个用来搭建 Laravel 应用的包 为何会创建这个包的列表?因为我是一个「比较懒」的开发者,在脸书上是多个 Laravel 小组的成员.平日遇到最多的问题就是开发是需要用那些包.我很 ...
- Hex Dump In Many Programming Languages
Hex Dump In Many Programming Languages See also: ArraySumInManyProgrammingLanguages, CounterInManyPr ...