【学习笔记】BEST定理
- 害怕忘记简单写一点:
- 无向图的生成树计数:https://www.cnblogs.com/zj75211/p/8039443.html (*ZJ学长 ORZ )
- 有向图的欧拉回路计数:https://blog.csdn.net/john123741/article/details/76586690
- 连通图$G = (V,E)$,欧拉回路条数$ec(G)$,$t_{s}$为有向图以$s$为根的树(内或外)个数,;
- 令$N_{x}(K)$为矩阵$K$去掉$x$阶的主子式,省略$x$表任意一阶,
无向图的生成树:
- 令$K = D - A$,D为度数矩阵,$A$为邻接矩阵;
- 无向图生成树个数$t = det(N(K))$
有向图的生成树:
- 分内向(边由叶子指向根)和外向(由根指向叶子);
- 外向树:$K = D - A$,$D$为入度矩阵,$A$为邻接矩阵;
- $t_{s} = det(N_{s}(K))$;
- 内向树:$K = D - A$,$D$为出度矩阵,$A$为邻接矩阵;
- 同样有$t_{s} = det(N_{s}(K))$;
有向图的欧拉回路:
- 如果每个点出度和入度不相等为0;
- $deg(u)$表示每个点的度数=出度=入度,以s为起点,$t_{s}$指外向树;
- $ec_{s}(G) \ = \ t_{s} \ \Pi_{u \in V} (\deg(u)-1)!$
- 另外我发现其实这里的$t_{s}$的$s$可以换成任意点,也就是说有欧拉回路的图所有点的外向树个数都是一样的不知道对不对??
- 如果边的环同构不算一种方案再乘上一个起点度数$deg(s)$;
- 所以大家的式子会有些小差异就是因为这个;
- 放一个裸题bzoj3659:
#include<bits/stdc++.h>
using namespace std;
const int N=,M=,mod=;
int n,m,fac[M],deg[N],a[N][N];
int pw(int x,int y){
int re=;
for(;y;y>>=,x=1ll*x*x%mod){
if(y&)re=1ll*re*x%mod;
}
return re;
}
int gauss(){
int fg=,re=;
for(int i=;i<n;++i){
int pos=i;
for(int j=i;j<n;++j)if(a[j][i]){
pos=j;break;
}
if(pos!=i){
fg^=;
for(int j=i;j<n;++j)swap(a[i][j],a[pos][j]);
}
re=1ll*re*a[i][i]%mod;
int tmp = pw(a[i][i],mod-);
for(int j=i;j<n;j++)a[i][j]=1ll*a[i][j]*tmp%mod;
for(int j=i+;j<n;++j)
for(int k=n-;k>=i;--k)a[j][k]=(a[j][k]-1ll*a[j][i]*a[i][k]%mod+mod)%mod;
}
if(fg)re=mod-re;
return (re+mod)%mod;
}
int main(){
freopen("bzoj3659.in","r",stdin);
freopen("bzoj3659.out","w",stdout);
for(int i=fac[]=;i<=2e5;++i)fac[i]=1ll*fac[i-]*i%mod;
while(~scanf("%d",&n)&&n){
for(int i=;i<=n;++i){
for(int j=;j<=n;++j)a[i][j]=;
}
for(int i=,s;i<=n;++i){
scanf("%d",&s);
deg[i]=s;
for(int j=,x;j<=s;++j){
scanf("%d",&x);
if(i!=x)a[i][x]--,a[i][i]++;
}
}
if(n==){printf("%d\n",fac[deg[]]);continue;}
int ans = gauss();
for(int i=;i<=n;++i)ans=1ll*ans*fac[deg[i]-]%mod;
ans = 1ll * deg[] * ans %mod;
printf("%d\n",ans);
}
return ;
}bzoj3659
- 未完待续。。。。。。。。。。。。。。。。。。
【学习笔记】BEST定理的更多相关文章
- poj1265&&2954 [皮克定理 格点多边形]【学习笔记】
Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊... Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...
- 【学习笔记】Polya定理
笔者经多番周折终于看懂了\(\text{Burnside}\)定理和\(\text{Polya}\)定理,特来写一篇学习笔记来记录一下. 群定义 定义:群\((G,·)\)是一个集合与一个运算·所定义 ...
- Windows录音API学习笔记(转)
源:Windows录音API学习笔记 Windows录音API学习笔记 结构体和函数信息 结构体 WAVEINCAPS 该结构描述了一个波形音频输入设备的能力. typedef struct { W ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- 概率图模型学习笔记:HMM、MEMM、CRF
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...
- OI数学 简单学习笔记
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...
- OI知识点|NOIP考点|省选考点|教程与学习笔记合集
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分 ...
- Windows录音API学习笔记
Windows录音API学习笔记 结构体和函数信息 结构体 WAVEINCAPS 该结构描述了一个波形音频输入设备的能力. typedef struct { WORD wMid; 用于波形 ...
- 我的Android进阶之旅------>Android中编解码学习笔记
编解码学习笔记(一):基本概念 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等 ...
随机推荐
- uafxcwd.lib(afxmem.obj) : error LNK2005: "void * __cdecl operator new(unsigned int)"解决办法
如果在编译MFC程序的时候出现下列及类似的错误: 1>uafxcwd.lib(afxmem.obj) : error LNK2005: "void * __cdecl operator ...
- linux一切皆文件之文件描述符(一)
一.知识准备 1.在linux中,一切皆为文件,所有不同种类的类型都被抽象成文件.如:普通文件.目录.字符设备.块设备.套接字等 2.当一个文件被进程打开,就会创建一个文件描述符.这时候,文件的路径就 ...
- Python数据分析工具库-Numpy 数组支持库(二)
1 shape变化及转置 >>> a = np.floor(10*np.random.random((3,4))) >>> a array([[ 2., 8., 0 ...
- python操作hive并且获取查询结果scheam
执行hive -e 命令并且获取对应的select查询出来的值及其对应的scheam字段 需要在执行语句中前部添加 set hive.cli.print.header=true; 这个设置,如下语句: ...
- Navicat将oracle中数据复制到mysql
1,首先两个数据库都要处于连接状态 2,工具 -- 数据传输 3,选择来源数据库以及要传输的表和目标数据库 4,点击开始 PS:遇到一个问题:[Err] [Dtf] 1426 - Too-big pr ...
- 1001.A+B Format (20)的感受
这是提交到Github的object-oriented文件夹里面的代码:https://github.com/sonnypp/object-oriented/tree/master/1001. 一.解 ...
- mongo导入导出命令
1.导出工具:mongoexport 1.概念: mongoDB中的mongoexport工具可以把一个collection导出成JSON格式或CSV格式的文件.可以通过参数指 ...
- Alpha版本冲刺(六)
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...
- java8之重新认识HashMap(转自美团技术团队)
java8之重新认识HashMap 摘要 HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型.随着JDK(JavaDevelopmet Kit)版本的更新,JDK1.8对Ha ...
- 解决getOutputStream() has alerady been called for this response
在用tomcat启动一个web项目(SpringBoot)的时候报错: getOutputStream() has alerady been called for this response 但是如果 ...