杜芬振子 Duffing oscillator是一个描写强迫振动的振动子,由非线性微分方程表示

杜芬方程列式如下:

其中

  • γ控制阻尼度
  • α控制韧度
  • β控制动力的非线性度
  • δ驱动力的振幅
  • ω驱动力的圆频率

杜芬方程没有解析解,但可用龙格-库塔法求得数值解。

当γ>0,杜芬振子呈现极限环振动;

相关软件:混沌数学及其软件模拟
相关代码:

//http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view
class DuffingEquation : public DifferentialEquation
{
public:
DuffingEquation()
{
m_StartX = 1.0f;
m_StartY = 1.0f;
m_StartZ = 0.0f; m_ParamA = 2.09f;
m_ParamB = 0.1f;
m_ParamC = 0.5f; m_StepT = 0.002f;
} void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
{
dX = y;
dY = m_ParamA*cosf(m_ParamC*m_ParamT) - m_ParamB*y + x - x*x*x;
dZ = 0.0f;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;}
bool IsValidParamC() const {return true;}
bool IsValidParamT() const {return true;}
};

相关截图:

混沌数学之Duffing(杜芬)振子的更多相关文章

  1. 混沌数学之Lorenz(洛伦茨)吸引子

    洛伦茨吸引子是洛伦茨振子(Lorenz oscillator)的长期行为对应的分形结构,以爱德华·诺顿·洛伦茨的姓氏命名. 洛伦茨振子是能产生混沌流的三维动力系统,是一种吸引子,以其双纽线形状而著称. ...

  2. 混沌数学之Chua's circuit(蔡氏电路)

    蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为.在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1].这个电路的制作 ...

  3. 混沌数学之logistic模型

    logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...

  4. 混沌数学之Henon吸引子

    Henon吸引子是混沌与分形的著名例子. 相关软件:混沌数学及其软件模拟相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.ht ...

  5. 混沌数学之拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)

    拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)是 1979年苏联物理学家拉比诺维奇和法布里康特提出模拟非平衡介 质自激波动的非线性常微分方程组: dot{x ...

  6. 混沌数学之Rössler(若斯叻)吸引子

    若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程: frac{dx(t)}{dt} = -y(t)-z(t) frac{dy(t)}{dt} = x(t)+a*y(t) fr ...

  7. 混沌数学之ASin模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...

  8. 混沌数学之Kent模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...

  9. 混沌数学之Feigenbaum模型

          1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系.这个数大约是4.669,它与π并列成为似乎在数学 ...

随机推荐

  1. 21:包含min函数的栈

    import java.util.Stack; /** * 面试题21:包含min函数的栈 * 定义栈的数据结构,请在该类型中实现一个能够得到栈最小元素的min函数. */ public class ...

  2. Java工具类- 跨域工具类

    原本Spring MVC项目添加跨域: 在web.xml文件中配置: <!-- cors解决跨域访问问题 --> <filter> <filter-name>cor ...

  3. 使用DNSPod域名解析

    1 在GoDaddy域名注册商 注册域名 https://sg.godaddy.com/zh/ 2 登陆DNSPod https://www.dnspod.cn 3 选择域名解析 添加域名 4 添加记 ...

  4. poj1273(Edmonds-Karp)

    这道题可以算是例题了. 求解最大流,采用EK算法,用广搜查找增广路径,找到后更新网络流矩阵,循环执行直至找不到增广路径为止.这里要小心的是重复边的情况. 程序也是参照了网上的模版来写的,有一些技巧.如 ...

  5. ICMP隧道工具ptunnel

    ICMP隧道工具ptunnel   在一些网络环境中,如果不经过认证,TCP和UDP数据包都会被拦截.如果用户可以ping通远程计算机,就可以尝试建立ICMP隧道,将TCP数据通过该隧道发送,实现不受 ...

  6. golang实现base64编解码

    golang中base64的编码和解码可以用内置库encoding/base64 package main import ( "encoding/base64" "fmt ...

  7. django中两张表有外键关系的相互查找方法,自定义json编码方法

    两张通过外键联系的表,如何在一张表上根据另一张表上的属性查找满足条件的对象集? 平常查找表中数据的条件是python中已有的数据类型,通过名字可以直接查找.如果条件是表中外键列所对应表的某一列,该如何 ...

  8. [BZOJ4700]适者(CDQ分治+DP/李超线段树)

    如果没有秒杀,就是经典的国王游戏问题,按t/a从小到大排序即可. 考虑删除两个数i<j能给答案减少的贡献:S[i]*T[i]+P[i-1]*A[i]-A[i]+S[j]*T[j]+P[j-1]* ...

  9. 洛谷P3119 USACO15JAN 草鉴定

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  10. js的继承实现方式

    1. 使用call或者apply来实现js对象继承 function Animal(age){ this.age = age; this.say = function(){ console.log(' ...